Graph Neural Networks with Node-wise Architecture

Zhen Wang
Alibaba Group
jones.wz@alibaba-inc.com

Weirui Kuang
Alibaba Group
weirui.kwr@alibaba-inc.com

ABSTRACT

Recently, Neural Architecture Search (NAS) for GNN has received
increasing popularity as it can seek an optimal architecture for a
given new graph. However, the optimal architecture is applied to
all the instances (i.e., nodes, in the context of graph) equally, which
might be insufficient to handle the diverse local patterns ingrained
in a graph, as shown in this paper and some very recent studies.
Thus, we argue the necessity of node-wise architecture search for
GNN. Nevertheless, node-wise architecture cannot be realized by
trivially applying NAS methods node by node due to the scalability
issue and the need for determining test nodes’ architectures. To
tackle these challenges, we propose a framework wherein the para-
metric controllers decide the GNN architecture for each node based
on its local patterns. We instantiate our framework with depth, ag-
gregator and resolution controllers, and then elaborate on learning
the backbone GNN model and the controllers to encourage their
cooperation. Empirically, we justify the effects of node-wise archi-
tecture through the performance improvements introduced by the
three controllers, respectively. Moreover, our proposed framework
significantly outperforms state-of-the-art methods on five of the
ten real-world datasets, where the diversity of these datasets has
hindered any graph convolution-based method to lead on them
simultaneously. This result further confirms that node-wise archi-
tecture can help GNNs become versatile models.

CCS CONCEPTS

« Computing methodologies — Neural networks; Machine
learning algorithms.

KEYWORDS

Graph Neural Networks; Neural Architecture Search; Dynamic
Neural Networks

ACM Reference Format:

Zhen Wang, Zhewei Wei, Yaliang Li, Weirui Kuang, Bolin Ding. 2022. Graph
Neural Networks with Node-wise Architecture. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °22, August 14-18, 2022, Washington, DC, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08....$15.00
https://doi.org/10.1145/3534678.3539387

Zhewei Wei
Renmin University of China
zhewei@ruc.edu.cn

Yaliang Li*
Alibaba Group
yaliang li@alibaba-inc.com

Bolin Ding
Alibaba Group
bolin.ding@alibaba-inc.com

"22), August 14-18, 2022, Washington, DC, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3534678.3539387

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) [4, 29] have been
proposed and applied to solve various tasks on ubiquitous graph
data, including social networks [15], citation networks [16], and
biological networks [38]. When applying GNN to a new graph, Neu-
ral Architecture Search (NAS) for GNN [5, 7, 18, 28, 34-37] is often
conducted to seek a suitable GNN architecture for handling that
graph, e.g., choosing the depth of GNN to be 3 from the candidate
depths {2,3, - - - }, choosing the mean pooling from the candidate
pooling operations {min, max, mean}, and so on.

Existing works in this line follow the convention of NAS to
apply the searched optimal architecture to all the instances (i.e.,
nodes) equally. However, for different nodes in the same graph,
their local patterns, including both the topological structures and
the node attributes in their neighborhoods, are usually very diverse,
making applying the same architecture to all nodes unsuitable. As a
piece of evidence, researchers have recently observed the different
levels of local assortativity exhibited in each of several real-world
graphs [24], which lead to unsatisfactory performances of several
representative GNNs [21]. Therefore, we argue that GNN with
node-wise architecture is much in demand.

To be specific, we present three examples in Fig. 1 that justify the
necessity of using node-wise architecture from three different as-
pects of architecture. (1) Different nodes may need different depths
for the GNN. Comparing the two rows of Fig. 1a, the message of
a densely connected node propagates much faster than that of a
node with rare connections. This phenomenon has been analyzed
as that nodes with a larger degree are more quickly to produce
over-smoothed node embeddings along with the iterations of graph
convolution operations [1, 23]. Node-wise depth has been studied in
recent works [14, 30] to allow nodes with different local structures
to have different depths while avoiding the over-smoothing issue.
These works support our idea of node-wise architecture from the
aspect of depth. (2) Different nodes may need different aggregators.
In Fig. 1b, with the assumed class labels and in-coming messages,
the two target nodes on the left-hand side can be successfully dis-
tinguished by a mean/sum pooling, while the two nodes on the
right-hand side require a max/min pooling. These two pairs have
been used by PNA [3] to motivate the usage of a mixture of ag-
gregators for a GNN. In our case, we emphasize the necessity of
selecting the appropriate aggregator in a node-wise manner. (3) We

“Corresponding author.

https://doi.org/10.1145/3534678.3539387
https://doi.org/10.1145/3534678.3539387

@Nz

X max/min Y<sum/mean
«/sum/mean g : “ </ max/min
0
(a) Depth (b) Aggregator (c) Resolution

Figure 1: Examples that motivate node-wise architecture for GNN. (a) Each row denotes a message propagation process, where
red color indicates the message has been propagated to the node. (b) Nodes with red color are target nodes to predict. The
numbers shown in yellow color nodes denote their messages to be propagated towards the target nodes. (c) Blue color nodes
and yellow color nodes are 1-hop and 2-hop neighbors of the red color node, where the numbers denotes the node attributes.

propose a novel notion, the resolution of a GNN layer, as how many
neighbors are sampled for aggregating their messages. Sampling is
necessary for training GNN models on large graphs, where different
resolutions often lead to different computation graphs and thus
architectures of the applied GNN. In practice, the widely-adopted
neighbor sampler [8] uses the same pre-specified resolutions of
the GNN layers for all nodes. However, when the local patterns
of a node are the case of the red node shown in Fig. 1c, sampling
more 1-hop neighbors would be better than sampling more 2-hop
neighbors in the sense of reducing the variance of estimation. Thus,
this node prefers a high resolution for the second GNN layer while
being insensitive to the resolution for the first layer.

Motivated by these observations, we study how to search for the
optimal GNN architecture in a node-wise manner. To this end, a
straightforward extension of existing NAS methods will increase
the size of search space linearly w.r.t. the number of nodes, which
makes it intractable on large-scale graphs. Moreover, such an exten-
sion searches the suitable architectures only for the nodes that are
accessible during training, and thus it cannot generate the suitable
architectures for the test nodes under the inductive setting.

To tackle these challenges, we propose a framework wherein
there is a parametric controller for each aspect of architecture, e.g.,
an aggregator controller, to decide which kind of aggregator should
be applied. To determine the architecture configuration for a node at
a specific layer, the controller first encodes the node’s local patterns
into a context embedding and then takes choices from the search
space based on it. For example, when we assume that features of
the node at previous layers are sufficient for determining its desired
aggregator at the current layer, we can feed the embeddings of the
node at previous layers into the aggregator controller. Intuitively,
the backbone GNN model depends on the controllers to predict
the suitable architectures, while the controllers make predictions
for each node based on the node’s local patterns captured by the
backbone model. Thus we design a learning method to promote
the cooperation between the backbone model and the controllers.

Since our context-aware controllers have a fixed number of pa-
rameters independent of the number of nodes and can generalize to
unseen nodes, the proposed framework can achieve node-wise ar-
chitecture for a GNN model even on a large-scale graph under both
transductive and inductive settings. It is worth noting that although
we instantiate the proposed framework with depth, aggregator, and
resolution controllers, controllers designated for other aspects of
GNN architecture can be easily included in our framework.

We compare our proposed framework with state-of-the-art meth-
ods on ten real-world graph datasets. Our method achieves the
best performances on half of them, where no or at most one base-
line method can reach our 95% confidence interval. Moreover, the
datasets we outperform include homophilic and heterophilic graphs,
where no existing graph convolution-based method can lead simul-
taneously. Meantime, the node-wise resolution is shown to improve
the performance of a GNN on a large-scale graph. Then we show
that the controllers can appropriately correlate the suitable node-
wise depth, aggregator, and resolution with each node’s local pat-
terns, which explains how node-wise architecture can improve the
performance of GNNs. The payment for realizing such node-wise
architecture is also empirically evaluated from the perspective of
sample efficiency and running time.

2 PRELIMINARIES

We first introduce the notations used in this paper, and give a brief
summary of GNN models and NAS for GNN. Let G = (V, §) denote
a graph with node attributes x, for each node v € V. Without loss of
generality, we consider undirected graphs in this paper, and thus the
neighborhood of a node v can be denoted by N (v) = {u|(u,v) € E}.
In this paper, we focus on node-level tasks (e.g., node classification)
where each node v is associated with a label y, € Y. Our goal is to
learn a GNN from the labeled nodes to predict the unlabeled ones.
GNN. Existing GNN models, spatial-based [8, 31] or spectral-based [4,
9, 12], are often described and implemented in the message passing
paradigm, where the representation hz(,l) of node v at the [-th layer
is recursively calculated by aggregating the messages propagated
from its neighbors. This calculation can be formulated as

b = o(Aggr,e ooy P @B = x0, (0)

where [= 1,...,L, o(-) denotes an activation function (e.g., ReLU),
gb(l) (-) denotes any differentiable function such as an MLP, and
Aggr(-) denotes a permutation-invariant aggregator such as the
mean pooling. In general, we can use hg,L) as the final node repre-
sentation z, for predicting y,.

NAS for GNN. Works in this line has studied some aspects of the ar-
chitecture for a GNN, e.g., the intra-layer design needs to determine
the Aggr(-) and the inter-layer design needs to seek for an optimal
depth L [34]. Each aspect is associated with its search space, e.g., the
Aggr(-) is allowed to take choice from O = {mean, add, max, min}.
Differentiable NAS [19, 36], one of the most widely adopted NAS

approaches, often models each aspect by a random variable, e.g.,

O with possible outcomes O, and parameterizes Pr(O) by a |O|-
exp(¢,)
2orco exp(@,r)
Conventionally, ¢ is called architecture parameter to be distin-

guished from the model parameter 6 of the backbone GNN model.
Then the search procedure corresponds to optimizing the architec-
ture parameter ¢.

dimensional vector ¢ in the form—Pr(O = o;¢) =

3 GNNS WITH NODE-WISE ARCHITECTURE

Generally, existing works in the line of NAS for GNN search for an
optimal architecture and apply it to all the nodes equally. Suppose
the searched architecture corresponds to a GNN that applies mean
pooling in its first layer and max pooling in its second layer. In
Fig. 2, when we apply this searched architecture to the graph, the
GNN models applied to the three nodes (A, E, and G) will result in
the computation graphs shown in the “ordinary GNN” part.

GNN with
° ® ® ©

node-wise

b architecture Mean
® @® @00 ©O
o © ffoe] [alw] [
000000 000°0 00
e e e e
©®0® ©® ® @c®e ®

[t an i ’ VM—VTVW\ Vi
000000 0000 00 00000000

e [v

Figure 2: An example to illustrate the difference between
node-wise architecture and using the same architecture.

However, as discussed in Sec 1, it might be unsatisfactory to apply
the same architecture for handling all the nodes, and thus GNN with
node-wise architecture is needed. Before introducing how to realize
GNN with node-wise architecture, we first present an example in
Fig. 2 to show its difference against an ordinary GNN. For depth,
the GNN applied to node G has four layers while the GNNs applied
to other nodes have a depth of two, where the difference might
come from their different node degrees. For aggregator, the GNN
applied to node B uses a mean pooling at its first layer while that
applied to node F uses a min pooling.

3.1 Context-aware Controller

For the differentiable NAS discussed in Sec. 2, suppose there is an
aspect of the architecture to be determined in each of the L layers,
then the distributions Pr(O(l)),l =1,...,L are parameterized by
the architecture parameters with a total dimension of L X |O|. If
we attempt to realize node-wise architecture via a straightforward
extension of such NAS method, there would be a dedicated random
variable Oz(,l) for each node v € V. Thus, the total dimension of
the required architecture parameters will increase along with the
number of nodes |V| linearly, which is unaffordable on large graphs.
Moreover, in an inductive setting, the test nodes are inaccessible
until the test phase, where the architecture parameters for the test
nodes cannot be estimated in advance.

To achieve GNN with node-wise architecture on large graphs,
we propose a framework that utilizes parametric controllers to pre-
dict the suitable architectures for the backbone GNN model. The
controller makes predictions for each node based on its context that
can reflect its local patterns. Thus different nodes are allowed to
have different GNN architectures. To determine a specific aspect of
the GNN architecture, we characterize the node-wise distribution
Pr(Oz(,l)) by g(-), which will encode its input into a context embed-
ding to reflect the local patterns of the node v at the stage of the I-th
layer and output a distribution over O. We are allowed to consider
different inputs for controllers responsible for different aspects of
GNN architecture, with the principle that the inputs should provide
sufficient evidence for determining the suitable architecture.

In our framework, any aspect of GNN architecture can be han-

dled by simply adding a corresponding controller. We exemplify
the proposed context-aware controller from the aspects of depth,
aggregator, and resolution as follows.
Depth controller. We present two different designs for the depth
controller g(d) (). In the first design, given the maximal allowed
depth L, we can define the search space as O = {0, ..., L}, the node-
wise distribution Pr(0,) = g(d) ({hgl),l =0,...,L}), and the final
node representation z, as follow:

L
2=) Pr(Oy = o). @)
0=0

In the other design, we let the controller to make a choice from
the search space O = {0,1} at each layer, where “1” means to
terminate at that layer. Then we define the node-wise and layer-
wise distribution by Pr(Oz(,l)) = g(d)({h,(f) |lu € N(v) U{v}}) and
calculate the final node representation of a node v as follow:

L -1
2=y er(0y) = [[a -0 =pDhy’.)
=0 k=0

where the products express the probability of being terminated at
the [-th layer but not any of the previous layers.

Aggregator controller. In addition to the dimension-wise pooling
operations, we also include a special “self_msg” operation which
receives the message of the target node itself while ignoring any in-
coming message. Then the search space of our aggregator controller
can be expressed as O = {max, min, add, mean, self_msg}. With the
aggregator controller ¢ (-), the first step in each message passing
iteration is to predict the aggregator to be applied, according to
Pr(0%) = ¢@ ((hY"V|u € N(0) U {0}}). Given the predicted dis-
tribution Pr(O,) over O, the message passing procedure defined
in Eq. (1) becomes:

b = (" Pr(0y = 0)ouen(ouioy @y). @
0e€0

In most practical cases, ¢(l) () defined in Eq. (1) is implemented
by an MLP. Since the different choices of the aggregator often
lead to drastically different statistics of their outputs [37], it would
be unstable in optimizing a ¢(l) (+) shared among the candidate
aggregators. Thus, we allow each aggregator o € O to have a

dedicated transformation ¢(§l) ()-

Resolution controller. Sampling is indispensable when we train
a GNN model on large graphs because an entire three-hop neigh-
borhood can often fail to fit into the GPU memory, not to mention
a larger neighborhood. In this paper, we consider one of the most
widely adopted samplers—neighbor sampler [8], where a fixed num-
ber of nodes are sampled in each hop. We define a GNN layer’s
resolution as the number of nodes sampled in the corresponding
hop and regard resolution as one aspect of GNN architecture. Then
the search space of the resolution controller consists of several con-
crete resolution configurations, e.g., O = {15-10-5, 14-10-7, 16-8-5},
where “15-10-5”, means sampling 15, 10, and 5 neighbors in the 3,
2, and 1-hop, respectively. It is worth noting that, in most cases,
sampling is conducted only for training but evaluation, where the
estimated node embedding flf,l) and the exact node embedding hgl)
are calculated based on a sampled or an entire neighborhood of v,
respectively. In each time of evaluation, we infer the exact node
embeddings for all the nodes and maintain their final node represen-
tations, i.e., zy, v € V. We assume z, is informative for determining
the suitable resolution for node v and choose the resolution for it
according to o ~ Pr(Oy) = g(r) (hi(,o), Zo, Yo)-

3.2 Modelling and Optimization

In the proposed framework, controllers are not restricted to any
particular functional form. We discuss some choices to show what
patterns in a node’s context should be recognized by the con-
trollers for making their decisions. For g(d) ({hz(,l),l =1,...,L}),
we can feed (hz(,l), .. .,hz(,L)) into a LSTM [10] and produce the
distribution based on its last hidden state. In this way, the or-
der matters, which reflects the intuition that the depth controller
observes how the node embedding changes along the iterations
of message passing and then attends to the suitable layer. For
g(d) ({hl(tl) |lu € N'(v) U{ov}}), the intuition is to compare the embed-
ding of target node hz(,l) with the embeddings of its neighbors, so
that the controller can determine to terminate at the current layer
when it finds that the embeddings have been similar to some extent.

Thus, a simple choice is to define Pr(Oz(,I) =1) = m with

a=b+ W 2ueN(v) (hf,l))Tth(j), where b and W are train-
able parameters ofg(d) (). For g(a) ({h,(llfl) |lu e N(v) U {o}}), we

aim to let the controller choose suitable aggregator based on some
basic statistics of the neighbors’ embeddings. Thus, we can param-
eterize g(“) (+) as an MLP fed with the concatenation of hz(,l_l) and
the max, min, add, and mean values of {hl(ll_l), u € N(v)}. As for
gér) (hz(,o), Zy, Up), we simply feed an MLP with the concatenation

of hz(,o), Zy, and yy.

Let us denote the parameters of the backbone GNN model by
0, the parameters of the controllers by ¢ = (¢y, ¢,, ¢,) where the
subscripts imply the corresponding controllers. According to Eq. (2),
Eq. (3), and Eq. (4)), we notice that the final node representation
z, depends on both ¢ and 0. Intuitively, the controllers make pre-
dictions for each node based on the node embeddings calculated
by the backbone GNN model, while the backbone GNN model
depends on the controllers to predict the suitable architectures.
Thus, to encourage their cooperation, we learn ¢ and 0 jointly. On

the one hand, only ¢4 and ¢, directly participate in the forward
propagation to produce z, and thus can be optimized in a differ-
entiable manner, e.g., making gradient descent like DARTS [19] or
making exponentiated gradient descent like GAEA [17]. On the
other hand, we regard the resolution controller g4 (-) as a paramet-
ric policy with action space (i.e., candidate resolutions) Oy, from
which we sample the resolutions. Since we cannot directly calcu-
late the gradients of z, w.r.t. the sampled resolutions, we adopt
policy gradient method [25] to optimize it. The goal of g () is
to select a suitable resolution configuration for each node v, such
that the estimated node embedding fl,()l) can better approximate the

exact one hz(,l). To this end, we design the reward function to be:
R(v,0) = —||zy — 2|12, 0 € V, 0 € Oy. The pseudo-code for learning
both ¢ and 6 can be found in Algorithm 1.

Algorithm 1 Learning a GNN with node-wise architecture.
Input: Graph G = (V, &) with splits Virain and Vya1id4, Graphs
sampler S, learning rate «, and #epochs T.
Output: Learned parameters ¢ = (¢4, ¢,, ¢,) and 6.
1: Randomly initialize ¢(°) and 6(?);
2: fort=0,1,...,T—1do
3. Infer z, forv € V by 60, ¢((lt>, ¢§t)

4 0y ~Pry (Oy) = 90 (hi(,o), Zy, Yo) for v € Vyanids

5: Gyalid ~ S(G,0,00),v € Vyaliqs // graph sampling
() 40,

6. Infer Z, for v € V,,1iq from Gy n154 by 6, ¢4 Pa
o ot e ¢l raVy i S R(0,00) logPrg (Op =
09); // policy gradients
s ¢l gl —aVy Lo, 9", 00) and ') —
) —aVy Loana@. 9", 00);

9 0p~g (+1) (hZ(JO)’ Zy, Yo) for v € Vipain;
100 Girain ~ S(G, 0, 05) for v € Virain; // graph sampling
1 00 00 —aVy L ({9, 00);

dient descent

12: end for
13: return ¢(T) and 6.

// gradient descent

// gra-

3.3 Discussion

Our proposed framework provides a unified view for achieving
GNN with node-wise architecture, which enables: (1) controllers
responsible for different aspects to be fed with respective informa-
tion as if it is suitable for determining the corresponding aspect; (2)
new aspects of the architecture to be added; (3) controllers to be
optimized jointly with the backbone GNN model, no matter they
are differentiable or not.

Connections to related works. There are several recent works
that our framework can express. Ala-GCN [30] terminates the it-
eration of message passing when an indicator for over-smoothing
is active, which is roughly the similarity between h, and {hy|u €
N (v)} and can be regarded as a non-parametric version of Eq. (4).
IterGNN [26] determines the depth of GNN on-the-fly similarly as
Eq. (3), but not in a node-wise manner. Policy-GNN [14] also uses
a policy to determine each node’s depth, where policy gradient

method is utilized; Considering RL’s notorious sample complexity
and the massive variance of policy gradients, we prefer to update
the controllers by gradient descent unless they are not differentiable.
PNA [3] improves the expressiveness by considering a mixture of
different aggregators, where the mixing coefficients are not flexibly
determined based on the local patterns of each node similar to our
aggregator controller. More methods that determine a specific as-
pect of each node’s architecture include JKNet [32], GAT [27], and
GeniePath [20]. When our framework is restricted to only one con-
troller of their corresponding aspect, our framework degenerates
to these methods.

Significance. Generalizing a single aspect of architecture to more
than one is nontrivial, as the enlarged search space poses diffi-
culties in learning the controllers. To the best of our knowledge,
we first attempt to consider more than one aspect and provide
rigorous sample complexity studies about this generalization (see
Sec. 4.3). Besides, we introduce the concept of resolution for GNN
architecture and design a corresponding controller, which has not
been considered before but is helpful for handling large graphs (see
Sec. 4.1.2). More importantly, NW-GNN is motivated by handling
the diverse local patterns ingrained in a graph. In contrast, prior
works, e.g., Ala-GCN and Policy-GNN, focus on utilizing node-wise
depth to alleviate the over-smoothing issue. To confirm our moti-
vation, we will empirically show in Sec. 4.1.1 the advantages of our
framework in performing well on the graphs where diverse levels
of local assortativity exist. GNN architectures with fixed spectral
property (e.g., low-pass) cannot perform well on such graphs, while
GPR-GNN achieves satisfactory performances by explicitly adjust-
ing the graph spectrum. In this sense, our empirical results provide
an exciting motivation for node-wise architecture—the potential of
promoting an ordinary GNN architecture to express a more broad

scope of graph filters.

4 EXPERIMENTS

In this section, we first compare the performance of our proposed
framework with state-of-the-art methods on several real-world
datasets. Then we empirically justify the effects of depth, aggrega-
tor, and resolution controllers, respectively. To better understand
both the benefits and burdens of node-wise architecture, we con-
duct experiments to study the sample efficiency and running time.
To keep our notations terse, we use NW-GNN to denote the instan-
tiation of our proposed framework.

4.1 Main Results on Real-world Datasets

4.1.1 Study on Both Homophilic and Heterophilic Graphs.

Datasets. We follow [2] to adopt ten node classification datasets
that are diverse enough for making a fair and comprehensive
comparison. We defer their details to Appendix (refer to Table 6
for their statistics). Their sizes (i.e., number of nodes) vary in a
broad range. Moreover, according to their levels of homophily, i.e.,

H(G) = 1 Toev W [22], the first five datasets
are homophilic, while the last five ones are heterophilic.

Settings. We follow the “dense split” setting of [2], where the node
set of each graph is randomly partitioned into train/valid/test sets
with a ratio of 60%/20%/20%. We produce ten random splits on

each dataset and conduct hyper-parameter optimization (HPO) for

each method, where the optimal hyper-parameter configuration is
determined w.r.t. the mean accuracy over the valid sets. We report
the mean accuracy on the test sets for comparison.

Methods. We instantiate our proposed framework by incorporat-
ing a vanilla backbone GNN model with depth and aggregator con-
trollers. We defer the study about resolution controller to Sec. 4.1.2
because the scales of the datasets considered here allow full-batch
training. Then we categorize our baselines into three classes:

(1) Manually designed architectures: Conventionally, we adopt MLP
and the widely adopted GNN architectures including ChebyNet [4],
GCN [12], GraphSAGE [8], GIN [31], APPNP [13], and GPR-GNN [2]
as the baselines to be compared.

(2) NAS without node-wise architecture: Then a NAS-related base-
line naturally comes up, which uses the same backbone and search
spaces as that of the proposed method NW-GNN. Specifically, this
baseline exhaustively enumerates the possible depths and aggrega-
tors and applies the searched optimal architecture to all the nodes
equally. We call this baseline NAS* for short, which serves as NW-
GNN’s optimal counterpart under the standard NAS setting.

(3) Single-aspect Node-wise architectures: We consider GAT [27],
JKNet [32], PNA [3], and Policy-GNN [14] which can be regarded
as adaptively determining the incoming neighbors, depth, aggrega-
tor, and depth, respectively.

We implement NW-GNN and NAS* with the open-source GNN
package—GraphGym [34], and the other baselines with their avail-
able open-source implementations. More details about implementa-
tion can be found in Appendix B.

Results and Analysis. We present the results in Table 1, where the
bold letters imply the best result on each dataset. Overall, NW-GNN
achieves best performances on half of the ten datasets, where none
or at most one baseline can reach its 95% confidence interval.

(1) NW-GNN is versatile: The datasets on which NW-GNN out-
performs the baselines include both homophilic and heterophilic
graphs. No graph convolution-based methods (i.e., all except for
MLP, APPNP, and GPR-GNN) can lead on them simultaneously. For
example, GCN consistently performs well on homophilic graphs,
but its performances on heterophilic graphs fall behind the leading
ones by significant margins.

(2) A single searched architecture is insufficient: Compared to GCN,
NAS* can use different architectures on different graphs and leads
to relatively balanced performances on these two genres of graphs.
However, it entirely fails to handle the heterophilic graph Actor. In
contrast, NW-GNN exhibits competitive performances on all these
graphs. As NAS* takes a single choice of the optimal depth and
aggregator, it essentially serves as ablation of node-wise architec-
ture. Meanwhile, some recent studies have shown that achieving
satisfactory performances on these considered heterophilic graphs
depends more on the capacity of addressing the diverse levels of
assortativity ingrained in the graph. Therefore, we attribute NW-
GNN’s versatility to its capability of adjusting depth and aggregator
in a node-wise manner.

(3) Node-wise architecture really helps for handling diverse local pat-
terns: Let us take Chameleon and Squirrel as examples, where the
local assortativity of node span in a broad range (see Fig. 7 in Ap-
pendix). The larger local assortativity is, the more homophilic a
node is. As illustrated in Fig. 3, NW-GNN consistently outperforms
those traditional graph convolution-based models on all the levels

Table 1: Results on real-world datasets: Mean accuracy (%) with its 95% confidence interval.

Cora CiteSeer PubMed Computers Chameleon Actor Squirrel Texas Cornell
MLP 76.99+1.40 75.11+1.24 86.80+0.40 84.58+0.60 88.90+0.52 46.93+1.54 39.2240.66 30.62+0.80 90.49+4.05 90.65+4.09
GCN 87.22+0.74 79.86+0.78 88.80+£0.53 88.57+0.54 93.13+0.27 60.53+1.35 33.98+0.76 46.78+0.89 77.38+4.18 76.07+4.80
ChebyNet 86.96+0.72 79.29+1.14 88.92+0.36 89.21+0.37 94.87+0.22 61.31£1.36 39.46+0.75 42.32+0.93 86.06+2.14 82.45+2.61
GraphSAGE ~ 87.63+1.56 79.78+0.82 90.29+0.61 90.53+0.31 94.60+0.25 65.51£1.36 40.63+0.85 48.99+0.65 79.03+1.20 71.41£1.23
GIN 83.74+0.90 75.95+1.20 88.38+0.40 57.18+0.21 69.03+22.38 40.18+13.74 32.81+1.05 28.70+2.77 79.67+3.78 78.36+1.56
APPNP 88.10+0.73 79.58+0.70 88.35+0.23 86.38+0.39 93.43+0.32 53.76+1.44 39.55+1.01 36.40+1.50 88.36+£2.59 90.00+2.71
GPR-GNN 88.48+0.51 79.49+1.15 90.90+0.65 88.70+0.45 93.95+0.44 67.26+£1.49 40.74+0.53 52.31+1.09 91.48+2.02 89.67+2.65
NAS* 87.09+1.08 80.27+0.89 88.32+0.56 89.78+0.18 93.30+0.26 67.66+1.25 34.58+0.54 55.79+1.52 89.74+3.65 90.59+3.95
GAT 88.03+0.62 80.70+0.60 88.13+0.59 90.28+0.29 93.60+0.36 66.48+1.02 35.98+0.23 53.31x1.16 78.87£0.86 76.00£1.01
JKNet 87.08+0.89 77.86+0.75 87.68+0.42 86.91+1.14 92.55+0.57 64.20+£1.92 33.64+0.56 44.72+0.48 75.53+1.16 66.73+1.73
PNA 83.71£1.14 74.76+1.19 83.38+0.75 89.88+0.60 93.13+£0.27 72.32+1.28 30.29+0.76 55.20%2.60 78.52+£4.58 67.05£5.56
Policy-GNN 87.88+1.98 82.92+8.32 87.76+0.70 00T 89.88+2.32 68.07+1.51 35.36+0.39 55.76+2.18 77.55+12.12 77.61+1.76
NW-GNN 88.03+0.78 79.36+0.89 91.22+0.38 91.27+0.14 95.12+0.23 69.06+£0.93 44.48+0.69 56.64+0.48 81.80+3.59 84.26+3.47

on Chameleon on Squirrel

o o

an an
08 om) OB e v
9 . i } — 9 IR s ey
| g [e
= p ~ s - =1
3 e == = < Zo.6| IS e ‘iﬁ —
0.6 [| c
© ©
g o4
0.4

—0.2 0.6 -0.2 0.6

0.0 0.2 0.4 0.0 0.2 0.4
Local Assortativity Local Assortativity
Figure 3: Performances v.s. local assortativity on two het-
erophilic graphs.

of local assortativity. Considering that GPR-GNN adjusts the graph
spectrums directly to handle both genres of graphs well, our archi-
tecture controllers have the potential to extend the expressiveness
of an ordinary GNN, acting a more broad scope of graph filters.
(4) Our controllers can choose the “ground-truth” architecture: All
GNN-based methods are outperformed by MLP on Cornell, and
NW-GNN outperforms most graph convolution-based methods on
Cornell, where the topological information might not be helpful
for node classification. Our advantage is rooted in the correct de-
cisions made by our aggregator controller, where the “self_msg”
operator is preferred. In this way, NW-GNN can degenerate into an
MLP. As for the other graph convolution-based methods, although
they either add self-loop or consider a residual path, the weights
for in-coming and self messages cannot be adjusted as effectively
as our aggregator controller does. The assertion that topological
information is not helpful is supported by the learned spectral co-
efficients of GPR-GNN. Among the polynomial coefficients learned
by GPR-GNN, only the coefficient of the zero-order term is a large
positive number; those corresponding to higher-order terms are
close to zero.

To better understand the behavior of the controllers, it would be
helpful to show the relationships between the local patterns and
the searched node-wise architectures on these datasets. However,
in our controllers, node features and topological structures together
determine the predicted architectures. Thus, identifying such re-
lationships is similar to explaining the behavior of GNNs, where
typical algorithms such as GNNExplainer [33] cannot provide satis-
factory explanations on these adopted datasets. Therefore, we have
to study such relationships on synthetic datasets in Sec. 4.2.

4.1.2 Study on Large-scale Graph.
Protocol. To evaluate the proposed resolution controller, we con-

duct experiment on a real-world large-scale dataset ogbn-products [11].

This dataset provides a node classification task on a graph with
2,449,029 nodes and 61,859,140 edges. Its scale makes full-batch
training of GNN impracticible, and thus graph sampling becomes
necessary. Hence, we adopt GraphSAGE as the backbone and train
the model with neighbor sampler [8]. Specifically, we aim to train
a three-layer GraphSAGE model, which, at each step, requires the
3-hop neighborhood of each target node in the current mini-batch
to be sampled. Without resolution controller, the sampler uses
the default resolution “15-10-5”, that is, to sample 15, 15, and 5
neighbors at the 1th, 2nd, and 3rd hop, respectively. When coupled
with our resolution controller, its search space consists of “15-10-5,
“14-12-5”, “16-10-2”, and “15-9-7". The controller is responsible for
determining a resolution from this space in each step, based on the
context (i.e., local patterns). We update the controller according to
what we have elaborated in Sec. 3.2. In this experiment, we focus on
comparing GraphSAGE without the resolution controller (denoted
by “w/0”) to that with the resolution controller (denoted by “w/”).
We run each setting for ten times and report its mean test accuracy.

Table 2: GraphSAGE w/o or w/ the resolution controller on
ogbn-products: Mean test accuracy (%) with Std. deviation.

Metric w/o w/

Mean test accuracy 78.29+0.16 78.92+0.50

Results and Analysis. We show the experimental results in Ta-
ble 2, where the performance of the baseline (i.e., “w/0”) is directly
copied from the leaderboards of OGB. GraphSAGE with our reso-
lution controller (i.e., “w/”) outperforms that without a controller,
where one std. below the mean of the former is still higher than
the mean of the latter. This comparison confirms the advantages
of adaptive node-wise resolutions in training GNNs with a graph
sampler, which also suggests the effectiveness of our proposed
resolution controller.

32_4 -@- Ground-truth Pl

[NW-GNN /

h=] P

23 P

S _

k5] o ’

52 A

1ie

= 1 2 3 4

True depth

Figure 4: Correlatioin between predicted and ground-truth
depths.

4.2 Justification of the Controllers’ Effects

We have shown the benefits of node-wise architecture via the ad-
vantages of NW-GNN on real-world datasets, where the impacts
of the introduced controllers entangle together. In the following
experiments, we study the effects of depth, aggregator, and reso-
lution controllers on three synthetic datasets, each of which calls
for node-wise depth, aggregator, and resolution, respectively. More
details about the construction of these synthetic datasets and the
implementations can be found in Appendix B.2.

4.2.1 Effect of Node-wise Depth.

For each node in our randomly generated graph, we label it by
counting the number of nodes in its k-hop neighborhood, where
k ~ Uniform({1, 2, 3,4}). We consider three different settings about
node attributes: (1) “w/o feat”: no node attribute; (2) “hard feat:
the ground-truth depth (i.e., k) for each node can be inferred from
its local information; and (3) “easy feat”: the ground-truth depth
for each node is given in its attributes. We compare NW-GNN to
both GCN and GPR-GNN on this node regression task, where mean
absolute error (MAE) on the test set is reported.

Table 3: Results of the node-wise depth study: Mean absolute
error (MAE) with its 95% confidence interval.

wrong depths is 0.53. These observations confirm the importance
of using node-wise depth and the advantage of our depth controller
over any fixed depth, which justify our conjecture.

4.2.2 Effect of Node-wise Aggregator.

For each node in our graph, we randomly generate a numeric at-
tribute by sampling from Uniform([—1.0, 1.1]) and two 5-dimensional
one-hot attributes. Then we label each node by propagating their
numeric attribute for two iterations, where the aggregators used
are indicated by its two one-hot attributes, with the choices from
{max, min, add, mean, self_msg}. We consider three different set-
tings about node attributes: (1) “w/o feat”: Only the numeric at-
tribute; (2) “hard feat”: The one-hot attribute corresponding to the
second iteration of message passing is given; and (3) “easy feat.”:
The two one-hot attributes are given. We compare NW-GNN to
Message Passing Neural Networks (MPNN) [6], GCN, and GPR-
GNN on this node regression task, where the mean absolute error
(MAE) on the test set is adopted as the measure of performance.
We present the results in Table 4, where NW-GNN surpasses all
the baselines under all the settings. To validate that the advantages
of NW-GNN come from its capacity of choosing aggregators in a
node-wise manner, we conduct a case study for NW-GNN under the
“easy feat.” setting. Specifically, we regard predicting the ground-
truth aggregator as a 5-class classification task, and the accuracy
of our controller is 54%. Meanwhile, the MAE on test nodes whose
aggregators are correctly predicted is 0.78 while that on incorrectly
predicted nodes is 2.02. These results confirm that NW-GNN can
achieve node-wise aggregator for the backbone GNN model.

Table 4: Results of the node-wise aggregator study: Mean
absolute error (MAE) with its 95% confidence interval.

Method w/o feat. hard feat. easy feat.

L=2 1.95+0.00 1.88+0.01 1.46%0.06

GCN L=3 1.96+0.00 1.95+0.01 1.61+0.03
L=4 1.95+0.00 1.98+0.01 1.67+0.03

a=0.1 222+0.00 2.21+0.00 1.83+0.02

GPR-GNN «a=0.5 2.08+0.01 2.09+0.01 1.79+0.02
a=0.7 2.11+0.03 2.08+£0.04 1.81+0.05

NW-GNN 1.97+0.01 1.67+0.09 0.38+0.08

Method w/o feat. hard feat. easy feat.
add 1.97+0.00 1.83+0.01 1.84+0.01

MPNN mean 1.97+0.00 1.88+0.01 1.79+0.00
1.96+0.00 1.89+0.00 1.85+0.00

min 1.97+0.00 1.90+0.00 1.91+0.01

GCN 1.81+0.00 1.81+0.01 1.81+£0.01
GPR-GNN 1.81+0.00 1.81+0.01 1.81+0.01
NW-GNN 1.71+0.01 1.55+0.06 1.35+0.08

4.2.3 Effect of Node-wise Resolution.

The results are presented in Table 3 where NW-GNN is compa-
rable w.r.t. GCN when there is no node attribute while surpasses all
the baselines by remarkable margins under the other two settings.
We attribute these advantages to our capability of using node-wise
depths, so that our method can make predictions by directly approx-
imating the generation process of ground-truth labels. To validate
this capability, we conduct a case study about the relationships
between our controller’s predicted depth and the ground-truth
depth and present the results in Fig. 4. Although the predictions
made by our controller are imperfect, the average predicted depth
positively correlates with the ground-truth depth. Meanwhile, un-
der the “easy feat” setting, the MAE upon test nodes that have a
correctly predicted depth is 0.15 while that upon test nodes with

We construct a synthetic dataset and define a node classification
task on it. At first, we generate 150 graphs, each of which is a tree,
consisting of a root node, five child nodes, and twenty-five leaf
nodes (five for each child). Then we randomly label each root node
as either positive or negative and generate the attributes for the
nodes according to its label. In detail, if the root node is a posi-
tive example, we allow fifteen leaf nodes to have attributes drawn
from N(:|1,0.5) while the other ten have attributes drawn from
N(:|0,0.5). Otherwise, we allow only twelves leaf nodes to have
attributes drawn from N (+|1, 0.5). If we allocate the attributes sam-
pled from N (|1, 0.5) for the five child nodes as equally as possible,
the graph belongs to Groupl. If we allocate the attributes sampled
from N(-|1,0.5) to the five child nodes with splits as skewed as
possible, the graph belongs to Group2. Finally, we randomly split
the generated graphs into equal-sized train/valid/test sets.

(o]
o
-
&
or
® o
I
|
|
J
|

NI

~
o
z
=
)
z
E

JEENAN
M
N
J|S R

2 Epoch3 Epoch4 Epo

{ 0.2
[] 0.0 Epoch1 Epo

viean accuracy (7o)
[=2]
[=)
—
[
- .
—

AN
N

o
M
N

IN

U1
o
=}
=}

I

mean pooling max pooling

(a) Comparison between differ- (b) The predictions of resolution
ent resolution configurations. controller.

Figure 5: Results of the node-wise resolution study.

To study the impact of the resolution controller, we adopt a two-
layer GraphSAGE and neighbor sampler [8] as our testbed, where
the fixed resolutions {1-5, 2-3, 3-2, 5-1} are considered as baselines
and the search space of our resolution controller. Meanwhile, we
consider both the default mean pooling and the max pooling for
the GraphSAGE models for the generality reason. We repeat the
training course of each method ten times, each of which consists
of 20 epochs.

The results are shown in Fig. 5a, where NW-GNN outperforms
the fixed resolutions, whichever aggregator the backbone model
uses. We conduct a ¢-test for the results, where the improvement of
NW-GNN is significant (p-value < 0.05) under the “mean pooling”
setting but not significant under the “max pooling” setting.

Furthermore, we conduct a case study to understand the behavior
of the resolution controller. Specifically, we collect the predictions
made by our resolution controller for each graph in the valid set and
then average the predictions for Group1 and Group2, respectively.
We present the averaged predictions for each group at the first
five epochs in Fig. 5b, where the height of each bar reflects the
probability of the corresponding resolution. The bar with or without
shadow corresponds to Group1 or Group2, respectively. Under both
the “mean pooling” and the “max pooling” settings, the controller
learns to use resolution “1-5” for Group1 while use resolution “5-
1” for Group2. For the graphs in Group2, since the attributes are
allocated for the child nodes unequally, the mean of the attributes
in each child’s leaf nodes varies a lot among the child nodes. Thus,
applying resolution “5-1” for Group2 reduces the variance, which
explains the improvements brought in by the resolution controller.

4.3 Further Analysis

We have validated the benefits brought in by the designed con-
trollers. Meanwhile, as they also introduce additional trainable
parameters, in this section, we study their influences from both
sample efficiency and running time. We use “w/o depth” and “w/o
aggr” to indicate NW-GNN with only aggregator controller or depth
controller, respectively.

Sample Efficiency. The methods considered in this comparison
include GCN, NW-GNN, and NW-GNN with ablation of either
the depth or the aggregator controller. In addition to the “dense
split” (i.e., 60%/20%/20%) used in Sec. 4.1, we also consider splits
“x/x/(1 - 2x)” with x € {2.5%, 5%, 10%, 20%}. The results are shown
in Fig. 6. Overall, the performances of each method grow with the
increase of training set ratio. On Cora, a typical homophilic graph,
GCN benefits from its low-pass filter nature and outperforms NW-
GNN when the training set is very limited. However, NW-GNN

— ~70
3 B 3 u
S 7 65 /
-85 o - &

>
g PS W 360 L]
T30 ° = Cs55]
3 ’] 250
875 ¢ *x 9 5 -
© 7 @ GeN © 45 ~ ® acn
% * ,, | NW-GNN % 40| * . NW-GNN
o 70 g F—- NW-GNN (/o depth) @ % —k— NW-GNN (/o depth)
= | | B NW-GNN (w/o aggr) s 35 ® B NW-GNN (w/o aggr)

25% 5% 10% 20% 60% 2.5% 5% 10% 20% 60%
Training set ratio Training set ratio

(a) On Cora. (b) On Chameleon.

Figure 6: Results of the sample efficiency study.

exhibits a much steeper growth curve and overtakes GCN with
the “dense split”. On Chameleon, NW-GNN surpasses GCN under
different settings consistently, and the slopes of their performance
curves are comparable. These observations suggest that the sam-
ple efficiency of NW-GNN is at least as good as GCN, where the
additional parameters introduced by our controllers will not be a
burden. For the ablation study, NW-GNN leads on both the datasets
under the “dense split” setting, but, with a smaller training set, the
removal of a controller (e.g., the depth controller or the aggregator
controller) may improve the performances. This phenomenon is
caused by the decrease in the number of trainable parameters.
Running Time. We present the running time for each method in
Table 5, where all training processes are executed on a NVIDIA
GeForce RTX 2080 Ti GPU (12GB memory). NW-GNN is slower than
other methods due to the existence of the controllers, which make
inferences about the architectures before the execution of graph
convolution operation. Compared to the SOTA method GPR-GNN,
such increase is around 2~5 times, which is tolerable in practice,
considering the performance improvement shown in Table 1.

5 CONCLUSIONS AND FUTURE DIRECTIONS

Motivated by observations with GNN applications, we propose a
framework to enable the node-wise architecture for GNN models, in
which the designed context-aware controllers can automatically uti-
lize the local information of each node. A series of experiments show
that the proposed framework outperforms state-of-the-art methods
on six real-world datasets. Since no existing graph convolution-
based model can simultaneously win on such a collection of various
graphs, we can confirm that node-wise architecture can make the
inflexible GNN models versatile. In this paper, We have focused on
demonstrating the effects of node-wise depth, aggregator, and reso-
lution and how the corresponding controllers work. In the future,
more additional controllers can be added as other instantiations of
the proposed framework, which deserves further studies.

6 ACKNOWLEDGMENTS

We thank the reviewers for their valuable comments. Zhewei Wei’s
work was partially done at Gaoling School of Artificial Intelligence,
Peng Cheng Laboratory, Beijing Key Laboratory of Big Data Man-
agement and Analysis Methods and MOE Key Lab of Data Engineer-
ing and Knowledge Engineering. Zhewei Wei was supported in part
by National Natural Science Foundation of China (No. 61932001, No.
61972401), by the major key project of PCL (PCL2021A12), Beijing
Natural Science Foundation (No. 4222028) and by Alibaba Group
through Alibaba Innovative Research Program.

Table 5: Average running time per epoch (ms) and (/) average total running time (s).

Cora CiteSeer =~ PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

MLP 1.87/0.39 1.89/0.38 2.13/0.47 2.01/0.47 1.82/0.39 1.81/0.37 1.85/0.37 1.95/0.39 1.98/0.41 1.73/0.36

GCN 4.12/0.90 4.00/0.89 4.05/0.87 5.12/1.23 4.22/1.09 4.33/1.03 4.07/0.83 4.77/1.13 3.71/0.75 3.78/0.77

ChebyNet 5.67/1.17 7.45/1.59 7.70/1.65 26.18/5.98 13.61/3.00 11.35/2.29 7.32/1.48 44.58/9.04 4.48/0.94 4.39/0.90

GraphSAGE 3.08/0.63 4.10/0.85 5.18/1.07 18.78/4.16 8.97/1.94 7.16/1.63 4.66/0.94 30.27/6.11 2.99/0.62 2.97/0.61

GIN 3.11/0.63 4.45/0.90 5.05/1.07 17.16/5.14 9.25/3.09 7.42/1.66 4.68/1.07 30.12/11.81 3.12/0.67 3.14/0.65

GAT 5.77/1.24 5.90/1.27 6.26/1.30 6.90/1.78 5.90/1.42 5.77/1.33 5.94/1.20 6.12/1.24 5.79/1.19 5.74/1.19

JKNet 13.59/3.02 10.56/2.13 11.80/2.94 10.81/3.11 10.42/3.14 12.23/3.10 12.68/2.58 14.16/2.87 10.51/2.19 11.95/2.42

APPNP 5.52/1.19 5.97/1.31 5.74/1.23 6.34/1.57 5.80/1.55 5.84/1.19 5.75/1.16 5.98/1.21 5.69/1.17 5.70/1.18

GPR-GNN 6.42/1.31 6.63/1.35 6.59/1.33 7.31/1.73 6.62/1.56 6.5/1.52 6.82/1.49 6.68/3.86 6.69/1.46 6.86/1.42

NW-GNN w/o depth 12.26/2.68 13.25/2.68 16.44/3.70 38.62/21.43 23.06/5.55 12.10/3.08 12.02/2.43 32.46/11.60 12.25/2.48 16.41/3.42

NW-GNN w/o aggr 12.04/2.47 16.74/3.72 20.50/4.58 38.04/12.78 22.84/5.17 12.65/3.67 12.38/2.51 32.88/7.69 17.95/4.02 15.93/3.55

NW-GNN w/ both 14.07/3.29 13.75/3.22 21.34/4.76 41.44/8.96 23.37/5.39 13.89/3.47 18.48/3.76 33.87/14.27 20.48/4.81 23.11/4.90
REFERENCES [20] Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan

[1] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.

[12

(13

[14

(15

[16

[17

]
1

]

[18]

[19

Simple and deep graph convolutional networks. In International Conference on
Machine Learning.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal
Generalized PageRank Graph Neural Network. In International Conference on
Learning Representations.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Velickovi¢.
2020. Principal Neighbourhood Aggregation for Graph Nets. In Advances in
Neural Information Processing Systems.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems (2016).

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. 2020. Graph
Neural Architecture Search. In Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI-20.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning.

Chaoyu Guan, Xin Wang, and Wenwu Zhu. 2021. AutoAttend: Automated Atten-
tion Representation Search. In Proceedings of the 38th International Conference on
Machine Learning.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing Systems.

Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. 2021. BernNet:
Learning Arbitrary Graph Spectral Filters via Bernstein Approximation. arXiv
preprint arXiv:2106.10994 (2021).

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation (1997).

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets for
Machine Learning on Graphs. Neural Information Processing Systems (NeurIPS)
(2020).

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
International Conference on Learning Representations (ICLR).

Kwei-Herng Lai, Daochen Zha, Kaixiong Zhou, and Xia Hu. 2020. Policy-GNN:
Aggregation Optimization for Graph Neural Networks.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting pos-
itive and negative links in online social networks. In Proceedings of the 19th
international conference on World wide web.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
densification laws, shrinking diameters and possible explanations. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining.

Liam Li, Mikhail Khodak, Nina Balcan, and Ameet Talwalkar. 2021. Geometry-
Aware Gradient Algorithms for Neural Architecture Search. In International
Conference on Learning Representations.

Yanxi Li, Zean Wen, Yunhe Wang, and Chang Xu. 2021. One-shot Graph Neu-
ral Architecture Search with Dynamic Search Space. Proceedings of the AAAI
Conference on Artificial Intelligence (2021).

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differentiable
Architecture Search. In International Conference on Learning Representations.

[21]

~
&,

[23

[24]

[25

Iy
S

[27

[28

[29

[30

(31]

(32]

[33

(34]

[35

(36]

[37

[38

Qi. 2019. Geniepath: Graph neural networks with adaptive receptive paths. In
Proceedings of the AAAI Conference on Artificial Intelligence.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. 2022. Is Homophily a Ne-
cessity for Graph Neural Networks?. In International Conference on Learning
Representations.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang.
2020. Geom-GCN: Geometric Graph Convolutional Networks. In International
Conference on Learning Representations.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropE-
dge: Towards Deep Graph Convolutional Networks on Node Classification. In
International Conference on Learning Representations.

Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. 2021.
Breaking the Limit of Graph Neural Networks by Improving the Assortativity
of Graphs with Local Mixing Patterns. Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (2021).

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. 2000.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems.

Hao Tang, Zhiao Huang, Jiayuan Gu, Baoliang Lu, and Hao Su. 2020. Towards
Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous GNNs.
the 34th Annual Conference on Neural Information Processing Systems (NeurIPS)
(2020).

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

Zhili Wang, Shimin Dj, and Lei Chen. 2021. AutoGEL: An Automated Graph
Neural Network with Explicit Link Information. Advances in Neural Information
Processing Systems 34 (2021).

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems (2021), 4-24.

Yiqing Xie, Sha Li, Carl Yang, Raymond Chi-Wing Wong, and Jiawei Han. 2020.
When Do GNNs Work: Understanding and Improving Neighborhood Aggregation.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmdssan, Stockholm, Sweden,
July 10-15, 2018.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019.
GNNExplainer: Generating Explanations for Graph Neural Networks.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design space for graph neural
networks. Advances in Neural Information Processing Systems (2020).

Ziwei Zhang, Xin Wang, and Wenwu Zhu. 2021. Automated Machine Learning
on Graphs: A Survey. arXiv preprint arXiv:2103.00742 (2021).

Huan Zhao, Quanming Yao, and Weiwei Tu. 2021. Search to aggregate neighbor-
hood for graph neural network. In ICDE.

Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. 2019. Auto-gnn: Neural
architecture search of graph neural networks. arXiv preprint arXiv:1909.03184
(2019).

Marinka Zitnik and Jure Leskovec. 2017. Predicting multicellular function through
multi-layer tissue networks. Bioinformatics (2017).

A MORE ON OPTIMIZATION

As we have discussed in Sec. 3.2, the forward propagation of our
model involves the backbone GNN model, the depth controller, and
the aggregator controller. Thus, denoting the loss function by £,
we can calculate its gradients Vg L, V¢ dL, and V¢a L, respectively.
Meanwhile, for each node v € V, the forward propagation results
in z, with entire graph and results in Z, with a sampled graph
which involves the resolution controller. Specifically, our resolution
controller rolls out a resolution configuration for each node v € V,
where the resolution determines how to sample a neighborhood
for calculating z,. Thus, we can calculate reward signals to update
¢ by policy gradients.

Since the parameters of our controllers play a similar role as the
architecture parameter defined in differentiable NAS, we follow
DARTS [19] to alternatively update on the training set Diy,in and
¢ on the valid set Dy,). We summarize our learning procedure in
Algorithm 1.

B IMPLEMENTATION DETAILS
B.1 On Real-world Datasets

We consistently preprocess the ten datasets. First, we follow GPR-
GNN [2] to normalize the attributes for each node. The splits of
nodes into train/valid/test sets are conducted with different random
seeds for the ten trials, where we ensure the ten seeds used for
different methods are the same to keep the comparison fair.

Since the baselines are implemented with the code of GPR-GNN,
we inherit their configurations mostly. For all the baselines ex-
cept for NAS*, we conduct HPO for them with learning rate €
{0.002,0.01, 0.05}, weight decay € {0,5x107%},and depth L € {2,3}.
For NAS”, in addition to these search spaces, we allow it to se-
lect candidate aggregators for its graph convolutional layers from
{min, max, add, mean, self_msg}. For NW-GNN, we use the sec-
ond design of depth controller (see Sec. 3.1). Both the depth and
aggregator controllers are parameterized as a MLP and fed with the
node embedding calculated at the corresponding layer. In addition
to learning rate and weight decay, we search for some dedicated
hyper-parameters for NW-GNN, including selecting the tempera-
ture of controllers’ softmax operation from {1.0, 10.0}, whether to
include “self_msg” in the search space of aggregator controller, and
whether to optimize the backbone GNN model and the controllers
equally. The optimal hyper-parameter configurations are provided
in our source code.

Each training course has 1,000 epochs, where the model is eval-
uated on the valid set after each epoch. The checkpoint at the
epoch with the best performance on the valid set is reserved. For
HPO, each configuration is evaluated by the mean (valid) accuracy
without leaking the test set.

B.2 On Synthetic Datasets

Node-wise depth. First, we generate a random graph whose degree
distribution follows a power law. Its basic statistics are as follow:
Number of nodes is 2,467, number of edges is 19,688, average degree
is 7.98, and clustering coefficient equals 0.126. Since the values of
the labels span a wide range with the maximal value of 2,467 and the
minimal value of 5, we take a logarithm for them for the numeric

on Chameleon on Squirrel

350

100 300

g 80 2250

ﬂ) [

S 60 5200

o 2150

a0 100
20 50

-0.2 0.6 -0.2 0.0 0.2 0.

. 4 0.6
Local Assortativity

0.0 0.2 0.4
Local Assortativity

Figure 7: Distributions of the test nodes’ local assortativity.

stability reason. Under the “w/o feat.” setting, we use the constant
“one" as the node attribute.

Under the “hard feat” setting, for each node v, we first sam-
ple a 16-dimensional attribute from N (-]0, 0.25I) and execute mes-
sage passing for k, iterations, where summation is adopted as
the aggregator. In this way, a 16-dimensional one-hot vector can
be constructed to indicate the index of maximal value in the 16-
dimensional aggregated message. We concatenate the two vectors
and regard it as the attribute for this node. As for “easy feat” setting,
we simply assign a 4-dimensional one-hot vector for each node as
its attribute, implying the ground-truth depth of this node.

Finally, we randomly split the node set of this graph into train,

valid, and test set with a ratio of 40%/30%/30%.
Node-wise aggregator. The graph is randomly generated in the
same way as before. Its basic statistics are as follow: Number of
nodes is 2,117, number of edges is 25,298, average degree is 11.94,
and clustering coefficient equals 0.094. The nodes on this graph are
also splitted in the same way as before.

Table 6: Datasets properties and statistics.

Cora CiteSeer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

#Nodes 2,708 3,327 19,717 13,752 7,650 2,277 5,201 7,600 183 183
#Edges 5,278 4,552 44,324 245,861 119,081 31,371 198,353 26,659 279 277
#Features 1,433 3,703 500 767 745 2,325 2,089 932 1,703 1,703
#Classes 7 6 5 10 8 5 5 5 5 5

H(G) 0.825 0.718 0.792 0.802 0.849 0.247 0.217 0.215 0.057 0.301

	Abstract
	1 Introduction
	2 Preliminaries
	3 GNNs with Node-wise Architecture
	3.1 Context-aware Controller
	3.2 Modelling and Optimization
	3.3 Discussion

	4 Experiments
	4.1 Main Results on Real-world Datasets
	4.2 Justification of the Controllers' Effects
	4.3 Further Analysis

	5 Conclusions and Future Directions
	6 Acknowledgments
	References
	A More on Optimization
	B Implementation Details
	B.1 On Real-world Datasets
	B.2 On Synthetic Datasets

