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ABSTRACT
Recently, Neural Architecture Search (NAS) for GNN has received

increasing popularity as it can seek an optimal architecture for a

given new graph. However, the optimal architecture is applied to

all the instances (i.e., nodes, in the context of graph) equally, which

might be insufficient to handle the diverse local patterns ingrained

in a graph, as shown in this paper and some very recent studies.

Thus, we argue the necessity of node-wise architecture search for

GNN. Nevertheless, node-wise architecture cannot be realized by

trivially applying NAS methods node by node due to the scalability

issue and the need for determining test nodes’ architectures. To

tackle these challenges, we propose a framework wherein the para-

metric controllers decide the GNN architecture for each node based

on its local patterns. We instantiate our framework with depth, ag-

gregator and resolution controllers, and then elaborate on learning

the backbone GNN model and the controllers to encourage their

cooperation. Empirically, we justify the effects of node-wise archi-

tecture through the performance improvements introduced by the

three controllers, respectively. Moreover, our proposed framework

significantly outperforms state-of-the-art methods on five of the

ten real-world datasets, where the diversity of these datasets has

hindered any graph convolution-based method to lead on them

simultaneously. This result further confirms that node-wise archi-

tecture can help GNNs become versatile models.
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1 INTRODUCTION
In recent years, Graph Neural Networks (GNNs) [4, 29] have been

proposed and applied to solve various tasks on ubiquitous graph

data, including social networks [15], citation networks [16], and

biological networks [38]. When applying GNN to a new graph, Neu-

ral Architecture Search (NAS) for GNN [5, 7, 18, 28, 34–37] is often

conducted to seek a suitable GNN architecture for handling that

graph, e.g., choosing the depth of GNN to be 3 from the candidate

depths {2, 3, · · · }, choosing the mean pooling from the candidate

pooling operations {min, max, mean}, and so on.

Existing works in this line follow the convention of NAS to

apply the searched optimal architecture to all the instances (i.e.,

nodes) equally. However, for different nodes in the same graph,

their local patterns, including both the topological structures and

the node attributes in their neighborhoods, are usually very diverse,

making applying the same architecture to all nodes unsuitable. As a

piece of evidence, researchers have recently observed the different

levels of local assortativity exhibited in each of several real-world

graphs [24], which lead to unsatisfactory performances of several

representative GNNs [21]. Therefore, we argue that GNN with

node-wise architecture is much in demand.

To be specific, we present three examples in Fig. 1 that justify the

necessity of using node-wise architecture from three different as-

pects of architecture. (1) Different nodes may need different depths

for the GNN. Comparing the two rows of Fig. 1a, the message of

a densely connected node propagates much faster than that of a

node with rare connections. This phenomenon has been analyzed

as that nodes with a larger degree are more quickly to produce

over-smoothed node embeddings along with the iterations of graph

convolution operations [1, 23]. Node-wise depth has been studied in

recent works [14, 30] to allow nodes with different local structures

to have different depths while avoiding the over-smoothing issue.

These works support our idea of node-wise architecture from the

aspect of depth. (2) Different nodes may need different aggregators.

In Fig. 1b, with the assumed class labels and in-coming messages,

the two target nodes on the left-hand side can be successfully dis-

tinguished by a mean/sum pooling, while the two nodes on the

right-hand side require a max/min pooling. These two pairs have

been used by PNA [3] to motivate the usage of a mixture of ag-

gregators for a GNN. In our case, we emphasize the necessity of

selecting the appropriate aggregator in a node-wise manner. (3) We
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Figure 1: Examples that motivate node-wise architecture for GNN. (a) Each row denotes a message propagation process, where
red color indicates the message has been propagated to the node. (b) Nodes with red color are target nodes to predict. The
numbers shown in yellow color nodes denote their messages to be propagated towards the target nodes. (c) Blue color nodes
and yellow color nodes are 1-hop and 2-hop neighbors of the red color node, where the numbers denotes the node attributes.

propose a novel notion, the resolution of a GNN layer, as how many

neighbors are sampled for aggregating their messages. Sampling is

necessary for training GNNmodels on large graphs, where different

resolutions often lead to different computation graphs and thus

architectures of the applied GNN. In practice, the widely-adopted

neighbor sampler [8] uses the same pre-specified resolutions of

the GNN layers for all nodes. However, when the local patterns

of a node are the case of the red node shown in Fig. 1c, sampling

more 1-hop neighbors would be better than sampling more 2-hop

neighbors in the sense of reducing the variance of estimation. Thus,

this node prefers a high resolution for the second GNN layer while

being insensitive to the resolution for the first layer.

Motivated by these observations, we study how to search for the

optimal GNN architecture in a node-wise manner. To this end, a

straightforward extension of existing NAS methods will increase

the size of search space linearly w.r.t. the number of nodes, which

makes it intractable on large-scale graphs. Moreover, such an exten-

sion searches the suitable architectures only for the nodes that are

accessible during training, and thus it cannot generate the suitable

architectures for the test nodes under the inductive setting.

To tackle these challenges, we propose a framework wherein

there is a parametric controller for each aspect of architecture, e.g.,

an aggregator controller, to decide which kind of aggregator should

be applied. To determine the architecture configuration for a node at

a specific layer, the controller first encodes the node’s local patterns

into a context embedding and then takes choices from the search

space based on it. For example, when we assume that features of

the node at previous layers are sufficient for determining its desired

aggregator at the current layer, we can feed the embeddings of the

node at previous layers into the aggregator controller. Intuitively,

the backbone GNN model depends on the controllers to predict

the suitable architectures, while the controllers make predictions

for each node based on the node’s local patterns captured by the

backbone model. Thus we design a learning method to promote

the cooperation between the backbone model and the controllers.

Since our context-aware controllers have a fixed number of pa-

rameters independent of the number of nodes and can generalize to

unseen nodes, the proposed framework can achieve node-wise ar-

chitecture for a GNN model even on a large-scale graph under both

transductive and inductive settings. It is worth noting that although

we instantiate the proposed framework with depth, aggregator, and

resolution controllers, controllers designated for other aspects of

GNN architecture can be easily included in our framework.

We compare our proposed framework with state-of-the-art meth-

ods on ten real-world graph datasets. Our method achieves the

best performances on half of them, where no or at most one base-

line method can reach our 95% confidence interval. Moreover, the

datasets we outperform include homophilic and heterophilic graphs,

where no existing graph convolution-based method can lead simul-

taneously. Meantime, the node-wise resolution is shown to improve

the performance of a GNN on a large-scale graph. Then we show

that the controllers can appropriately correlate the suitable node-

wise depth, aggregator, and resolution with each node’s local pat-

terns, which explains how node-wise architecture can improve the

performance of GNNs. The payment for realizing such node-wise

architecture is also empirically evaluated from the perspective of

sample efficiency and running time.

2 PRELIMINARIES
We first introduce the notations used in this paper, and give a brief

summary of GNNmodels and NAS for GNN. Let𝐺 = (V, E) denote
a graphwith node attributes x𝑣 for each node 𝑣 ∈ V .Without loss of

generality, we consider undirected graphs in this paper, and thus the

neighborhood of a node 𝑣 can be denoted byN(𝑣) = {𝑢 | (𝑢, 𝑣) ∈ E}.
In this paper, we focus on node-level tasks (e.g., node classification)

where each node 𝑣 is associated with a label 𝑦𝑣 ∈ Y. Our goal is to
learn a GNN from the labeled nodes to predict the unlabeled ones.

GNN. ExistingGNNmodels, spatial-based [8, 31] or spectral-based [4,

9, 12], are often described and implemented in the message passing

paradigm, where the representation h(𝑙)𝑣 of node 𝑣 at the 𝑙-th layer

is recursively calculated by aggregating the messages propagated

from its neighbors. This calculation can be formulated as

h(𝑙)𝑣 = 𝜎 (Aggr𝑢∈N(𝑣)∪{𝑣 } (𝜙 (𝑙) (h
(𝑙−1)
𝑢 ))), h(0)𝑣 = x𝑣, (1)

where 𝑙 = 1, . . . , 𝐿, 𝜎 (·) denotes an activation function (e.g., ReLU),

𝜙 (𝑙) (·) denotes any differentiable function such as an MLP, and

Aggr(·) denotes a permutation-invariant aggregator such as the

mean pooling. In general, we can use h(𝐿)𝑣 as the final node repre-

sentation z𝑣 for predicting 𝑦𝑣 .
NAS for GNN. Works in this line has studied some aspects of the ar-

chitecture for a GNN, e.g., the intra-layer design needs to determine

the Aggr(·) and the inter-layer design needs to seek for an optimal

depth 𝐿 [34]. Each aspect is associated with its search space, e.g., the

Aggr(·) is allowed to take choice from O = {mean, add, max, min}.
Differentiable NAS [19, 36], one of the most widely adopted NAS



approaches, often models each aspect by a random variable, e.g.,

𝑂 with possible outcomes O, and parameterizes Pr(𝑂) by a |O|-
dimensional vector 𝝓 in the form—Pr(𝑂 = 𝑜 ; 𝝓) = exp(𝝓𝑜 )∑

𝑜′∈O exp(𝝓𝑜′ )
.

Conventionally, 𝝓 is called architecture parameter to be distin-

guished from the model parameter 𝜽 of the backbone GNN model.

Then the search procedure corresponds to optimizing the architec-

ture parameter 𝝓.

3 GNNS WITH NODE-WISE ARCHITECTURE
Generally, existing works in the line of NAS for GNN search for an

optimal architecture and apply it to all the nodes equally. Suppose

the searched architecture corresponds to a GNN that applies mean

pooling in its first layer and max pooling in its second layer. In

Fig. 2, when we apply this searched architecture to the graph, the

GNN models applied to the three nodes (A, E, and G) will result in

the computation graphs shown in the “ordinary GNN” part.

Figure 2: An example to illustrate the difference between
node-wise architecture and using the same architecture.

However, as discussed in Sec 1, it might be unsatisfactory to apply

the same architecture for handling all the nodes, and thus GNNwith

node-wise architecture is needed. Before introducing how to realize

GNN with node-wise architecture, we first present an example in

Fig. 2 to show its difference against an ordinary GNN. For depth,

the GNN applied to node G has four layers while the GNNs applied

to other nodes have a depth of two, where the difference might

come from their different node degrees. For aggregator, the GNN

applied to node B uses a mean pooling at its first layer while that

applied to node F uses a min pooling.

3.1 Context-aware Controller
For the differentiable NAS discussed in Sec. 2, suppose there is an

aspect of the architecture to be determined in each of the 𝐿 layers,

then the distributions Pr(𝑂 (𝑙) ), 𝑙 = 1, . . . , 𝐿 are parameterized by

the architecture parameters with a total dimension of 𝐿 × |O|. If
we attempt to realize node-wise architecture via a straightforward

extension of such NAS method, there would be a dedicated random

variable 𝑂
(𝑙)
𝑣 for each node 𝑣 ∈ 𝑉 . Thus, the total dimension of

the required architecture parameters will increase along with the

number of nodes |𝑉 | linearly, which is unaffordable on large graphs.

Moreover, in an inductive setting, the test nodes are inaccessible

until the test phase, where the architecture parameters for the test

nodes cannot be estimated in advance.

To achieve GNN with node-wise architecture on large graphs,

we propose a framework that utilizes parametric controllers to pre-

dict the suitable architectures for the backbone GNN model. The

controller makes predictions for each node based on its context that

can reflect its local patterns. Thus different nodes are allowed to

have different GNN architectures. To determine a specific aspect of

the GNN architecture, we characterize the node-wise distribution

Pr(𝑂 (𝑙)𝑣 ) by 𝑔(·), which will encode its input into a context embed-

ding to reflect the local patterns of the node 𝑣 at the stage of the 𝑙-th

layer and output a distribution over O. We are allowed to consider

different inputs for controllers responsible for different aspects of

GNN architecture, with the principle that the inputs should provide

sufficient evidence for determining the suitable architecture.

In our framework, any aspect of GNN architecture can be han-

dled by simply adding a corresponding controller. We exemplify

the proposed context-aware controller from the aspects of depth,

aggregator, and resolution as follows.

Depth controller. We present two different designs for the depth

controller 𝑔 (d) (·). In the first design, given the maximal allowed

depth 𝐿, we can define the search space as O = {0, . . . , 𝐿}, the node-
wise distribution Pr(𝑂𝑣) = 𝑔 (d) ({h(𝑙)𝑣 , 𝑙 = 0, . . . , 𝐿}), and the final

node representation z𝑣 as follow:

z𝑣 =
𝐿∑︁

𝑜=0

Pr(𝑂𝑣 = 𝑜)h(𝑜)𝑣 . (2)

In the other design, we let the controller to make a choice from

the search space O = {0, 1} at each layer, where “1” means to

terminate at that layer. Then we define the node-wise and layer-

wise distribution by Pr(𝑂 (𝑙)𝑣 ) = 𝑔 (𝑑) ({h(𝑙)𝑢 |𝑢 ∈ N (𝑣) ∪ {𝑣}}) and
calculate the final node representation of a node 𝑣 as follow:

z𝑣 =
𝐿∑︁
𝑙=0

(Pr(𝑂 (𝑙)𝑣 = 1)
𝑙−1∏
𝑘=0

(1 − Pr(𝑂 (𝑘)𝑣 = 1)))h(𝑙)𝑣 , (3)

where the products express the probability of being terminated at

the 𝑙-th layer but not any of the previous layers.

Aggregator controller. In addition to the dimension-wise pooling

operations, we also include a special “self_msg” operation which

receives the message of the target node itself while ignoring any in-

coming message. Then the search space of our aggregator controller

can be expressed as O = {max,min, add,mean, self_msg}. With the

aggregator controller 𝑔 (a) (·), the first step in each message passing

iteration is to predict the aggregator to be applied, according to

Pr(𝑂 (𝑙)𝑣 ) = 𝑔 (a) ({h(𝑙−1)𝑢 |𝑢 ∈ N (𝑣) ∪ {𝑣}}). Given the predicted dis-

tribution Pr(𝑂 (𝑙)𝑣 ) over O, the message passing procedure defined

in Eq. (1) becomes:

h(𝑙)𝑣 = 𝜎 (
∑︁
𝑜∈O

Pr(𝑂 (𝑙)𝑣 = 𝑜)𝑜𝑢∈N(𝑣)∪{𝑣 } (𝜙 (h
(𝑙−1)
𝑢 ))) . (4)

In most practical cases, 𝜙 (𝑙) (·) defined in Eq. (1) is implemented

by an MLP. Since the different choices of the aggregator often

lead to drastically different statistics of their outputs [37], it would

be unstable in optimizing a 𝜙 (𝑙) (·) shared among the candidate

aggregators. Thus, we allow each aggregator 𝑜 ∈ O to have a

dedicated transformation 𝜙
(𝑙)
𝑜 (·).



Resolution controller. Sampling is indispensable when we train

a GNN model on large graphs because an entire three-hop neigh-

borhood can often fail to fit into the GPU memory, not to mention

a larger neighborhood. In this paper, we consider one of the most

widely adopted samplers—neighbor sampler [8], where a fixed num-

ber of nodes are sampled in each hop. We define a GNN layer’s

resolution as the number of nodes sampled in the corresponding

hop and regard resolution as one aspect of GNN architecture. Then

the search space of the resolution controller consists of several con-

crete resolution configurations, e.g., O = {15-10-5, 14-10-7, 16-8-5},
where “15-10-5”, means sampling 15, 10, and 5 neighbors in the 3,

2, and 1-hop, respectively. It is worth noting that, in most cases,

sampling is conducted only for training but evaluation, where the

estimated node embedding
ˆh(𝑙)𝑣 and the exact node embedding h(𝑙)𝑣

are calculated based on a sampled or an entire neighborhood of 𝑣 ,

respectively. In each time of evaluation, we infer the exact node

embeddings for all the nodes and maintain their final node represen-

tations, i.e., z𝑣, 𝑣 ∈ V . We assume z𝑣 is informative for determining

the suitable resolution for node 𝑣 and choose the resolution for it

according to 𝑜 ∼ Pr(𝑂𝑣) = 𝑔 (r) (h(0)𝑣 , z𝑣, 𝑦𝑣).

3.2 Modelling and Optimization
In the proposed framework, controllers are not restricted to any

particular functional form. We discuss some choices to show what

patterns in a node’s context should be recognized by the con-

trollers for making their decisions. For 𝑔 (d) ({h(𝑙)𝑣 , 𝑙 = 1, . . . , 𝐿}),
we can feed (h(1)𝑣 , . . . , h(𝐿)𝑣 ) into a LSTM [10] and produce the

distribution based on its last hidden state. In this way, the or-

der matters, which reflects the intuition that the depth controller

observes how the node embedding changes along the iterations

of message passing and then attends to the suitable layer. For

𝑔 (d) ({h(𝑙)𝑢 |𝑢 ∈ N (𝑣) ∪ {𝑣}}), the intuition is to compare the embed-

ding of target node h(𝑙)𝑣 with the embeddings of its neighbors, so

that the controller can determine to terminate at the current layer

when it finds that the embeddings have been similar to some extent.

Thus, a simple choice is to define Pr(𝑂 (𝑙)𝑣 = 1) = 1

1+exp{𝑎} with

𝑎 = 𝑏 + 1

|N (𝑣) |
∑
𝑢∈N(𝑣) (h

(𝑙)
𝑣 )TWh(𝑙)𝑢 , where 𝑏 and W are train-

able parameters of 𝑔 (d) (·). For 𝑔 (a) ({h(𝑙−1)𝑢 |𝑢 ∈ N (𝑣) ∪ {𝑣}}), we
aim to let the controller choose suitable aggregator based on some

basic statistics of the neighbors’ embeddings. Thus, we can param-

eterize 𝑔 (𝑎) (·) as an MLP fed with the concatenation of h(𝑙−1)𝑣 and

the max, min, add, and mean values of {h(𝑙−1)𝑢 , 𝑢 ∈ N (𝑣)}. As for
𝑔
(r)
𝜙
(h(0)𝑣 , z𝑣, 𝑦𝑣), we simply feed an MLP with the concatenation

of h(0)𝑣 , z𝑣 , and 𝑦𝑣 .
Let us denote the parameters of the backbone GNN model by

𝜽 , the parameters of the controllers by 𝝓 = (𝝓
d
, 𝝓

a
, 𝝓

r
) where the

subscripts imply the corresponding controllers. According to Eq. (2),

Eq. (3), and Eq. (4)), we notice that the final node representation

z𝑣 depends on both 𝝓 and 𝜽 . Intuitively, the controllers make pre-

dictions for each node based on the node embeddings calculated

by the backbone GNN model, while the backbone GNN model

depends on the controllers to predict the suitable architectures.

Thus, to encourage their cooperation, we learn 𝝓 and 𝜽 jointly. On

the one hand, only 𝝓
d
and 𝝓

a
directly participate in the forward

propagation to produce z𝑣 and thus can be optimized in a differ-

entiable manner, e.g., making gradient descent like DARTS [19] or

making exponentiated gradient descent like GAEA [17]. On the

other hand, we regard the resolution controller 𝑔𝝓
r

(·) as a paramet-

ric policy with action space (i.e., candidate resolutions) Or, from
which we sample the resolutions. Since we cannot directly calcu-

late the gradients of z𝑣 w.r.t. the sampled resolutions, we adopt

policy gradient method [25] to optimize it. The goal of 𝑔𝝓
r

(·) is
to select a suitable resolution configuration for each node 𝑣 , such

that the estimated node embedding
ˆh(𝑙)𝑣 can better approximate the

exact one h(𝑙)𝑣 . To this end, we design the reward function to be:

𝑅(𝑣, 𝑜) = −∥z𝑣 − ẑ𝑣 ∥2
2
, 𝑣 ∈ V, 𝑜 ∈ Or. The pseudo-code for learning

both 𝝓 and 𝜽 can be found in Algorithm 1.

Algorithm 1 Learning a GNN with node-wise architecture.

Input: Graph 𝐺 = (V, E) with splits Vtrain and V
valid

, Graphs

sampler 𝑆 , learning rate 𝛼 , and #epochs 𝑇 .

Output: Learned parameters 𝝓 = (𝝓
d
, 𝝓

a
, 𝝓

r
) and 𝜽 .

1: Randomly initialize 𝝓 (0) and 𝜽 (0) ;
2: for 𝑡 = 0, 1, . . . ,𝑇 − 1 do
3: Infer z𝑣 for 𝑣 ∈ V by 𝜽 (𝑡 ) , 𝝓 (𝑡 )

d
, 𝝓 (𝑡 )

a

4: 𝑜𝑣 ∼ Pr𝝓
r

(𝑂𝑣) = 𝑔
𝝓 (𝑡 )
r

(h(0)𝑣 , z𝑣, 𝑦𝑣) for 𝑣 ∈ Vvalid
;

5: 𝐺
valid
∼ 𝑆 (𝐺, 𝑣, 𝑜𝑣), 𝑣 ∈ Vvalid

; // graph sampling

6: Infer ẑ𝑣 for 𝑣 ∈ Vvalid
from 𝐺

valid
by 𝜽 (𝑡 ) , 𝝓 (𝑡 )

d
, 𝝓 (𝑡 )

a
;

7: 𝝓 (𝑡+1)
r

← 𝝓 (𝑡 )
r
+𝛼∇𝝓

r

1

|Vvalid |
∑

𝑣∈Vvalid

𝑅(𝑣, 𝑜𝑣) log Pr𝝓
r

(𝑂𝑣 =

𝑜𝑣); // policy gradients

8: 𝝓 (𝑡+1)
d

← 𝝓 (𝑡 )
d
− 𝛼∇𝝓

d

L
valid
(𝝓 (𝑡 )

d
, 𝝓 (𝑡 )

a
, 𝜽 (𝑡 ) ) and 𝝓 (𝑡+1)

a
←

𝝓 (𝑡 )
a
− 𝛼∇𝝓

a

L
valid
(𝝓 (𝑡 )

d
, 𝝓 (𝑡 )

a
, 𝜽 (𝑡 ) ); // gradient descent

9: 𝑜𝑣 ∼ 𝑔𝝓 (𝑡+1)
r

(h(0)𝑣 , z𝑣, 𝑦𝑣) for 𝑣 ∈ Vtrain;

10: 𝐺train ∼ 𝑆 (𝐺, 𝑣, 𝑜𝑣) for 𝑣 ∈ Vtrain; // graph sampling

11: 𝜽 (𝑡+1) ← 𝜽 (𝑡 ) − 𝛼∇𝜽Ltrain (𝝍 (𝑡+1)
d

, 𝝍 (𝑡+1)
a

, 𝜽 (𝑡 ) ); // gra-

dient descent

12: end for
13: return 𝝓 (𝑇 ) and 𝜽 (𝑇 ) .

3.3 Discussion
Our proposed framework provides a unified view for achieving

GNN with node-wise architecture, which enables: (1) controllers

responsible for different aspects to be fed with respective informa-

tion as if it is suitable for determining the corresponding aspect; (2)

new aspects of the architecture to be added; (3) controllers to be

optimized jointly with the backbone GNN model, no matter they

are differentiable or not.

Connections to related works. There are several recent works
that our framework can express. Ala-GCN [30] terminates the it-

eration of message passing when an indicator for over-smoothing

is active, which is roughly the similarity between h𝑣 and {h𝑢 |𝑢 ∈
N (𝑣)} and can be regarded as a non-parametric version of Eq. (4).

IterGNN [26] determines the depth of GNN on-the-fly similarly as

Eq. (3), but not in a node-wise manner. Policy-GNN [14] also uses

a policy to determine each node’s depth, where policy gradient



method is utilized; Considering RL’s notorious sample complexity

and the massive variance of policy gradients, we prefer to update

the controllers by gradient descent unless they are not differentiable.

PNA [3] improves the expressiveness by considering a mixture of

different aggregators, where the mixing coefficients are not flexibly

determined based on the local patterns of each node similar to our

aggregator controller. More methods that determine a specific as-

pect of each node’s architecture include JKNet [32], GAT [27], and

GeniePath [20]. When our framework is restricted to only one con-

troller of their corresponding aspect, our framework degenerates

to these methods.

Significance. Generalizing a single aspect of architecture to more

than one is nontrivial, as the enlarged search space poses diffi-

culties in learning the controllers. To the best of our knowledge,

we first attempt to consider more than one aspect and provide

rigorous sample complexity studies about this generalization (see

Sec. 4.3). Besides, we introduce the concept of resolution for GNN

architecture and design a corresponding controller, which has not

been considered before but is helpful for handling large graphs (see

Sec. 4.1.2). More importantly, NW-GNN is motivated by handling

the diverse local patterns ingrained in a graph. In contrast, prior

works, e.g., Ala-GCN and Policy-GNN, focus on utilizing node-wise

depth to alleviate the over-smoothing issue. To confirm our moti-

vation, we will empirically show in Sec. 4.1.1 the advantages of our

framework in performing well on the graphs where diverse levels

of local assortativity exist. GNN architectures with fixed spectral

property (e.g., low-pass) cannot perform well on such graphs, while

GPR-GNN achieves satisfactory performances by explicitly adjust-

ing the graph spectrum. In this sense, our empirical results provide

an exciting motivation for node-wise architecture—the potential of

promoting an ordinary GNN architecture to express a more broad

scope of graph filters.

4 EXPERIMENTS
In this section, we first compare the performance of our proposed

framework with state-of-the-art methods on several real-world

datasets. Then we empirically justify the effects of depth, aggrega-

tor, and resolution controllers, respectively. To better understand

both the benefits and burdens of node-wise architecture, we con-

duct experiments to study the sample efficiency and running time.

To keep our notations terse, we use NW-GNN to denote the instan-

tiation of our proposed framework.

4.1 Main Results on Real-world Datasets
4.1.1 Study on Both Homophilic and Heterophilic Graphs.
Datasets.We follow [2] to adopt ten node classification datasets

that are diverse enough for making a fair and comprehensive

comparison. We defer their details to Appendix (refer to Table 6

for their statistics). Their sizes (i.e., number of nodes) vary in a

broad range. Moreover, according to their levels of homophily, i.e.,

H(𝐺) = 1

|𝑉 |
∑

𝑣∈𝑉
| {𝑢 |𝑢∈N(𝑣)∧𝑦𝑢=𝑦𝑣 } |

|N (𝑣) | [22], the first five datasets

are homophilic, while the last five ones are heterophilic.

Settings.We follow the “dense split” setting of [2], where the node

set of each graph is randomly partitioned into train/valid/test sets

with a ratio of 60%/20%/20%. We produce ten random splits on

each dataset and conduct hyper-parameter optimization (HPO) for

each method, where the optimal hyper-parameter configuration is

determined w.r.t. the mean accuracy over the valid sets. We report

the mean accuracy on the test sets for comparison.

Methods.We instantiate our proposed framework by incorporat-

ing a vanilla backbone GNN model with depth and aggregator con-

trollers. We defer the study about resolution controller to Sec. 4.1.2

because the scales of the datasets considered here allow full-batch

training. Then we categorize our baselines into three classes:

(1) Manually designed architectures: Conventionally, we adopt MLP

and the widely adopted GNN architectures including ChebyNet [4],

GCN [12], GraphSAGE [8], GIN [31], APPNP [13], andGPR-GNN [2]

as the baselines to be compared.

(2) NAS without node-wise architecture: Then a NAS-related base-

line naturally comes up, which uses the same backbone and search

spaces as that of the proposed method NW-GNN. Specifically, this

baseline exhaustively enumerates the possible depths and aggrega-

tors and applies the searched optimal architecture to all the nodes

equally. We call this baseline NAS
∗
for short, which serves as NW-

GNN’s optimal counterpart under the standard NAS setting.

(3) Single-aspect Node-wise architectures: We consider GAT [27],

JKNet [32], PNA [3], and Policy-GNN [14] which can be regarded

as adaptively determining the incoming neighbors, depth, aggrega-

tor, and depth, respectively.

We implement NW-GNN and NAS
∗
with the open-source GNN

package—GraphGym [34], and the other baselines with their avail-

able open-source implementations. More details about implementa-

tion can be found in Appendix B.

Results and Analysis.We present the results in Table 1, where the

bold letters imply the best result on each dataset. Overall,NW-GNN

achieves best performances on half of the ten datasets, where none

or at most one baseline can reach its 95% confidence interval.

(1) NW-GNN is versatile: The datasets on which NW-GNN out-

performs the baselines include both homophilic and heterophilic

graphs. No graph convolution-based methods (i.e., all except for

MLP, APPNP, and GPR-GNN) can lead on them simultaneously. For

example, GCN consistently performs well on homophilic graphs,

but its performances on heterophilic graphs fall behind the leading

ones by significant margins.

(2) A single searched architecture is insufficient: Compared to GCN,

NAS
∗
can use different architectures on different graphs and leads

to relatively balanced performances on these two genres of graphs.

However, it entirely fails to handle the heterophilic graph Actor. In

contrast, NW-GNN exhibits competitive performances on all these

graphs. As NAS
∗
takes a single choice of the optimal depth and

aggregator, it essentially serves as ablation of node-wise architec-

ture. Meanwhile, some recent studies have shown that achieving

satisfactory performances on these considered heterophilic graphs

depends more on the capacity of addressing the diverse levels of

assortativity ingrained in the graph. Therefore, we attribute NW-

GNN’s versatility to its capability of adjusting depth and aggregator

in a node-wise manner.

(3) Node-wise architecture really helps for handling diverse local pat-

terns: Let us take Chameleon and Squirrel as examples, where the

local assortativity of node span in a broad range (see Fig. 7 in Ap-

pendix). The larger local assortativity is, the more homophilic a

node is. As illustrated in Fig. 3, NW-GNN consistently outperforms

those traditional graph convolution-based models on all the levels



Table 1: Results on real-world datasets: Mean accuracy (%) with its 95% confidence interval.

Cora CiteSeer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

MLP 76.99±1.40 75.11±1.24 86.80±0.40 84.58±0.60 88.90±0.52 46.93±1.54 39.22±0.66 30.62±0.80 90.49±4.05 90.65±4.09
GCN 87.22±0.74 79.86±0.78 88.80±0.53 88.57±0.54 93.13±0.27 60.53±1.35 33.98±0.76 46.78±0.89 77.38±4.18 76.07±4.80

ChebyNet 86.96±0.72 79.29±1.14 88.92±0.36 89.21±0.37 94.87±0.22 61.31±1.36 39.46±0.75 42.32±0.93 86.06±2.14 82.45±2.61
GraphSAGE 87.63±1.56 79.78±0.82 90.29±0.61 90.53±0.31 94.60±0.25 65.51±1.36 40.63±0.85 48.99±0.65 79.03±1.20 71.41±1.23

GIN 83.74±0.90 75.95±1.20 88.38±0.40 57.18±0.21 69.03±22.38 40.18±13.74 32.81±1.05 28.70±2.77 79.67±3.78 78.36±1.56
APPNP 88.10±0.73 79.58±0.70 88.35±0.23 86.38±0.39 93.43±0.32 53.76±1.44 39.55±1.01 36.40±1.50 88.36±2.59 90.00±2.71

GPR-GNN 88.48±0.51 79.49±1.15 90.90±0.65 88.70±0.45 93.95±0.44 67.26±1.49 40.74±0.53 52.31±1.09 91.48±2.02 89.67±2.65
NAS

∗
87.09±1.08 80.27±0.89 88.32±0.56 89.78±0.18 93.30±0.26 67.66±1.25 34.58±0.54 55.79±1.52 89.74±3.65 90.59±3.95

GAT 88.03±0.62 80.70±0.60 88.13±0.59 90.28±0.29 93.60±0.36 66.48±1.02 35.98±0.23 53.31±1.16 78.87±0.86 76.00±1.01
JKNet 87.08±0.89 77.86±0.75 87.68±0.42 86.91±1.14 92.55±0.57 64.20±1.92 33.64±0.56 44.72±0.48 75.53±1.16 66.73±1.73
PNA 83.71±1.14 74.76±1.19 83.38±0.75 89.88±0.60 93.13±0.27 72.32±1.28 30.29±0.76 55.20±2.60 78.52±4.58 67.05±5.56

Policy-GNN 87.88±1.98 82.92±8.32 87.76±0.70 OOT 89.88±2.32 68.07±1.51 35.36±0.39 55.76±2.18 77.55±12.12 77.61±1.76
NW-GNN 88.03±0.78 79.36±0.89 91.22±0.38 91.27±0.14 95.12±0.23 69.06±0.93 44.48±0.69 56.64±0.48 81.80±3.59 84.26±3.47
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Figure 3: Performances v.s. local assortativity on two het-
erophilic graphs.

of local assortativity. Considering that GPR-GNN adjusts the graph

spectrums directly to handle both genres of graphs well, our archi-

tecture controllers have the potential to extend the expressiveness

of an ordinary GNN, acting a more broad scope of graph filters.

(4) Our controllers can choose the “ground-truth” architecture: All

GNN-based methods are outperformed by MLP on Cornell, and

NW-GNN outperforms most graph convolution-based methods on

Cornell, where the topological information might not be helpful

for node classification. Our advantage is rooted in the correct de-

cisions made by our aggregator controller, where the “self_msg”

operator is preferred. In this way, NW-GNN can degenerate into an

MLP. As for the other graph convolution-based methods, although

they either add self-loop or consider a residual path, the weights

for in-coming and self messages cannot be adjusted as effectively

as our aggregator controller does. The assertion that topological

information is not helpful is supported by the learned spectral co-

efficients of GPR-GNN. Among the polynomial coefficients learned

by GPR-GNN, only the coefficient of the zero-order term is a large

positive number; those corresponding to higher-order terms are

close to zero.

To better understand the behavior of the controllers, it would be

helpful to show the relationships between the local patterns and

the searched node-wise architectures on these datasets. However,

in our controllers, node features and topological structures together

determine the predicted architectures. Thus, identifying such re-

lationships is similar to explaining the behavior of GNNs, where

typical algorithms such as GNNExplainer [33] cannot provide satis-

factory explanations on these adopted datasets. Therefore, we have

to study such relationships on synthetic datasets in Sec. 4.2.

4.1.2 Study on Large-scale Graph.
Protocol. To evaluate the proposed resolution controller, we con-

duct experiment on a real-world large-scale dataset ogbn-products [11].

This dataset provides a node classification task on a graph with

2,449,029 nodes and 61,859,140 edges. Its scale makes full-batch

training of GNN impracticible, and thus graph sampling becomes

necessary. Hence, we adopt GraphSAGE as the backbone and train

the model with neighbor sampler [8]. Specifically, we aim to train

a three-layer GraphSAGE model, which, at each step, requires the

3-hop neighborhood of each target node in the current mini-batch

to be sampled. Without resolution controller, the sampler uses

the default resolution “15-10-5”, that is, to sample 15, 15, and 5

neighbors at the 1th, 2nd, and 3rd hop, respectively. When coupled

with our resolution controller, its search space consists of “15-10-5”,

“14-12-5”, “16-10-2”, and “15-9-7”. The controller is responsible for

determining a resolution from this space in each step, based on the

context (i.e., local patterns). We update the controller according to

what we have elaborated in Sec. 3.2. In this experiment, we focus on

comparing GraphSAGE without the resolution controller (denoted

by “w/o”) to that with the resolution controller (denoted by “w/”).

We run each setting for ten times and report its mean test accuracy.

Table 2: GraphSAGE w/o or w/ the resolution controller on
ogbn-products: Mean test accuracy (%) with Std. deviation.

Metric w/o w/

Mean test accuracy 78.29±0.16 78.92±0.50

Results and Analysis.We show the experimental results in Ta-

ble 2, where the performance of the baseline (i.e., “w/o”) is directly

copied from the leaderboards of OGB. GraphSAGE with our reso-

lution controller (i.e., “w/”) outperforms that without a controller,

where one std. below the mean of the former is still higher than

the mean of the latter. This comparison confirms the advantages

of adaptive node-wise resolutions in training GNNs with a graph

sampler, which also suggests the effectiveness of our proposed

resolution controller.



Figure 4: Correlatioin between predicted and ground-truth
depths.

4.2 Justification of the Controllers’ Effects
We have shown the benefits of node-wise architecture via the ad-

vantages of NW-GNN on real-world datasets, where the impacts

of the introduced controllers entangle together. In the following

experiments, we study the effects of depth, aggregator, and reso-

lution controllers on three synthetic datasets, each of which calls

for node-wise depth, aggregator, and resolution, respectively. More

details about the construction of these synthetic datasets and the

implementations can be found in Appendix B.2.

4.2.1 Effect of Node-wise Depth.
For each node in our randomly generated graph, we label it by

counting the number of nodes in its 𝑘-hop neighborhood, where

𝑘 ∼ Uniform({1, 2, 3, 4}). We consider three different settings about

node attributes: (1) “w/o feat.”: no node attribute; (2) “hard feat.”:

the ground-truth depth (i.e., 𝑘) for each node can be inferred from

its local information; and (3) “easy feat.”: the ground-truth depth

for each node is given in its attributes. We compare NW-GNN to

both GCN and GPR-GNN on this node regression task, where mean

absolute error (MAE) on the test set is reported.

Table 3: Results of the node-wise depth study: Mean absolute
error (MAE) with its 95% confidence interval.

Method w/o feat. hard feat. easy feat.

GCN

𝐿 = 2 1.95±0.00 1.88±0.01 1.46±0.06
𝐿 = 3 1.96±0.00 1.95±0.01 1.61±0.03
𝐿 = 4 1.95±0.00 1.98±0.01 1.67±0.03

GPR-GNN

𝛼 = 0.1 2.22±0.00 2.21±0.00 1.83±0.02
𝛼 = 0.5 2.08±0.01 2.09±0.01 1.79±0.02
𝛼 = 0.7 2.11±0.03 2.08±0.04 1.81±0.05

NW-GNN 1.97±0.01 1.67±0.09 0.38±0.08

The results are presented in Table 3 where NW-GNN is compa-

rable w.r.t. GCN when there is no node attribute while surpasses all

the baselines by remarkable margins under the other two settings.

We attribute these advantages to our capability of using node-wise

depths, so that our method can make predictions by directly approx-

imating the generation process of ground-truth labels. To validate

this capability, we conduct a case study about the relationships

between our controller’s predicted depth and the ground-truth

depth and present the results in Fig. 4. Although the predictions

made by our controller are imperfect, the average predicted depth

positively correlates with the ground-truth depth. Meanwhile, un-

der the “easy feat.” setting, the MAE upon test nodes that have a

correctly predicted depth is 0.15 while that upon test nodes with

wrong depths is 0.53. These observations confirm the importance

of using node-wise depth and the advantage of our depth controller

over any fixed depth, which justify our conjecture.

4.2.2 Effect of Node-wise Aggregator.
For each node in our graph, we randomly generate a numeric at-

tribute by sampling fromUniform( [−1.0, 1.1]) and two 5-dimensional

one-hot attributes. Then we label each node by propagating their

numeric attribute for two iterations, where the aggregators used

are indicated by its two one-hot attributes, with the choices from

{max, min, add, mean, self_msg}. We consider three different set-

tings about node attributes: (1) “w/o feat.”: Only the numeric at-

tribute; (2) “hard feat.”: The one-hot attribute corresponding to the

second iteration of message passing is given; and (3) “easy feat.”:

The two one-hot attributes are given. We compare NW-GNN to

Message Passing Neural Networks (MPNN) [6], GCN, and GPR-

GNN on this node regression task, where the mean absolute error

(MAE) on the test set is adopted as the measure of performance.

We present the results in Table 4, where NW-GNN surpasses all

the baselines under all the settings. To validate that the advantages

of NW-GNN come from its capacity of choosing aggregators in a

node-wise manner, we conduct a case study forNW-GNN under the

“easy feat.” setting. Specifically, we regard predicting the ground-

truth aggregator as a 5-class classification task, and the accuracy

of our controller is 54%. Meanwhile, the MAE on test nodes whose

aggregators are correctly predicted is 0.78 while that on incorrectly

predicted nodes is 2.02. These results confirm that NW-GNN can

achieve node-wise aggregator for the backbone GNN model.

Table 4: Results of the node-wise aggregator study: Mean
absolute error (MAE) with its 95% confidence interval.

Method w/o feat. hard feat. easy feat.

MPNN

add 1.97±0.00 1.83±0.01 1.84±0.01
mean 1.97±0.00 1.88±0.01 1.79±0.00
max 1.96±0.00 1.89±0.00 1.85±0.00
min 1.97±0.00 1.90±0.00 1.91±0.01

GCN 1.81±0.00 1.81±0.01 1.81±0.01
GPR-GNN 1.81±0.00 1.81±0.01 1.81±0.01
NW-GNN 1.71±0.01 1.55±0.06 1.35±0.08

4.2.3 Effect of Node-wise Resolution.
We construct a synthetic dataset and define a node classification

task on it. At first, we generate 150 graphs, each of which is a tree,

consisting of a root node, five child nodes, and twenty-five leaf

nodes (five for each child). Then we randomly label each root node

as either positive or negative and generate the attributes for the

nodes according to its label. In detail, if the root node is a posi-

tive example, we allow fifteen leaf nodes to have attributes drawn

from N(·|1, 0.5) while the other ten have attributes drawn from

N(·|0, 0.5). Otherwise, we allow only twelves leaf nodes to have

attributes drawn from N(·|1, 0.5). If we allocate the attributes sam-

pled from N(·|1, 0.5) for the five child nodes as equally as possible,

the graph belongs to Group1. If we allocate the attributes sampled

from N(·|1, 0.5) to the five child nodes with splits as skewed as

possible, the graph belongs to Group2. Finally, we randomly split

the generated graphs into equal-sized train/valid/test sets.
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Figure 5: Results of the node-wise resolution study.

To study the impact of the resolution controller, we adopt a two-

layer GraphSAGE and neighbor sampler [8] as our testbed, where

the fixed resolutions {1-5, 2-3, 3-2, 5-1} are considered as baselines

and the search space of our resolution controller. Meanwhile, we

consider both the default mean pooling and the max pooling for

the GraphSAGE models for the generality reason. We repeat the

training course of each method ten times, each of which consists

of 20 epochs.

The results are shown in Fig. 5a, where NW-GNN outperforms

the fixed resolutions, whichever aggregator the backbone model

uses. We conduct a 𝑡-test for the results, where the improvement of

NW-GNN is significant (𝑝-value < 0.05) under the “mean pooling”

setting but not significant under the “max pooling” setting.

Furthermore, we conduct a case study to understand the behavior

of the resolution controller. Specifically, we collect the predictions

made by our resolution controller for each graph in the valid set and

then average the predictions for Group1 and Group2, respectively.

We present the averaged predictions for each group at the first

five epochs in Fig. 5b, where the height of each bar reflects the

probability of the corresponding resolution. The bar with or without

shadow corresponds to Group1 or Group2, respectively. Under both

the “mean pooling” and the “max pooling” settings, the controller

learns to use resolution “1-5” for Group1 while use resolution “5-

1” for Group2. For the graphs in Group2, since the attributes are

allocated for the child nodes unequally, the mean of the attributes

in each child’s leaf nodes varies a lot among the child nodes. Thus,

applying resolution “5-1” for Group2 reduces the variance, which

explains the improvements brought in by the resolution controller.

4.3 Further Analysis
We have validated the benefits brought in by the designed con-

trollers. Meanwhile, as they also introduce additional trainable

parameters, in this section, we study their influences from both

sample efficiency and running time. We use “w/o depth” and “w/o

aggr” to indicateNW-GNNwith only aggregator controller or depth

controller, respectively.

Sample Efficiency. The methods considered in this comparison

include GCN, NW-GNN, and NW-GNN with ablation of either

the depth or the aggregator controller. In addition to the “dense

split” (i.e., 60%/20%/20%) used in Sec. 4.1, we also consider splits

“𝑥/𝑥/(1− 2𝑥)” with 𝑥 ∈ {2.5%, 5%, 10%, 20%}. The results are shown
in Fig. 6. Overall, the performances of each method grow with the

increase of training set ratio. On Cora, a typical homophilic graph,

GCN benefits from its low-pass filter nature and outperforms NW-

GNN when the training set is very limited. However, NW-GNN

(a) On Cora. (b) On Chameleon.

Figure 6: Results of the sample efficiency study.

exhibits a much steeper growth curve and overtakes GCN with

the “dense split”. On Chameleon, NW-GNN surpasses GCN under

different settings consistently, and the slopes of their performance

curves are comparable. These observations suggest that the sam-

ple efficiency of NW-GNN is at least as good as GCN, where the

additional parameters introduced by our controllers will not be a

burden. For the ablation study, NW-GNN leads on both the datasets

under the “dense split” setting, but, with a smaller training set, the

removal of a controller (e.g., the depth controller or the aggregator

controller) may improve the performances. This phenomenon is

caused by the decrease in the number of trainable parameters.

Running Time. We present the running time for each method in

Table 5, where all training processes are executed on a NVIDIA

GeForce RTX 2080 Ti GPU (12GBmemory).NW-GNN is slower than

other methods due to the existence of the controllers, which make

inferences about the architectures before the execution of graph

convolution operation. Compared to the SOTA method GPR-GNN,

such increase is around 2∼5 times, which is tolerable in practice,

considering the performance improvement shown in Table 1.

5 CONCLUSIONS AND FUTURE DIRECTIONS
Motivated by observations with GNN applications, we propose a

framework to enable the node-wise architecture for GNNmodels, in

which the designed context-aware controllers can automatically uti-

lize the local information of each node. A series of experiments show

that the proposed framework outperforms state-of-the-art methods

on six real-world datasets. Since no existing graph convolution-

based model can simultaneously win on such a collection of various

graphs, we can confirm that node-wise architecture can make the

inflexible GNN models versatile. In this paper, We have focused on

demonstrating the effects of node-wise depth, aggregator, and reso-

lution and how the corresponding controllers work. In the future,

more additional controllers can be added as other instantiations of

the proposed framework, which deserves further studies.
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Table 5: Average running time per epoch (ms) and (/) average total running time (s).

Cora CiteSeer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

MLP 1.87/0.39 1.89/0.38 2.13/0.47 2.01/0.47 1.82/0.39 1.81/0.37 1.85/0.37 1.95/0.39 1.98/0.41 1.73/0.36

GCN 4.12/0.90 4.00/0.89 4.05/0.87 5.12/1.23 4.22/1.09 4.33/1.03 4.07/0.83 4.77/1.13 3.71/0.75 3.78/0.77

ChebyNet 5.67/1.17 7.45/1.59 7.70/1.65 26.18/5.98 13.61/3.00 11.35/2.29 7.32/1.48 44.58/9.04 4.48/0.94 4.39/0.90

GraphSAGE 3.08/0.63 4.10/0.85 5.18/1.07 18.78/4.16 8.97/1.94 7.16/1.63 4.66/0.94 30.27/6.11 2.99/0.62 2.97/0.61

GIN 3.11/0.63 4.45/0.90 5.05/1.07 17.16/5.14 9.25/3.09 7.42/1.66 4.68/1.07 30.12/11.81 3.12/0.67 3.14/0.65

GAT 5.77/1.24 5.90/1.27 6.26/1.30 6.90/1.78 5.90/1.42 5.77/1.33 5.94/1.20 6.12/1.24 5.79/1.19 5.74/1.19

JKNet 13.59/3.02 10.56/2.13 11.80/2.94 10.81/3.11 10.42/3.14 12.23/3.10 12.68/2.58 14.16/2.87 10.51/2.19 11.95/2.42

APPNP 5.52/1.19 5.97/1.31 5.74/1.23 6.34/1.57 5.80/1.55 5.84/1.19 5.75/1.16 5.98/1.21 5.69/1.17 5.70/1.18

GPR-GNN 6.42/1.31 6.63/1.35 6.59/1.33 7.31/1.73 6.62/1.56 6.5/1.52 6.82/1.49 6.68/3.86 6.69/1.46 6.86/1.42

NW-GNN w/o depth 12.26/2.68 13.25/2.68 16.44/3.70 38.62/21.43 23.06/5.55 12.10/3.08 12.02/2.43 32.46/11.60 12.25/2.48 16.41/3.42

NW-GNN w/o aggr 12.04/2.47 16.74/3.72 20.50/4.58 38.04/12.78 22.84/5.17 12.65/3.67 12.38/2.51 32.88/7.69 17.95/4.02 15.93/3.55

NW-GNN w/ both 14.07/3.29 13.75/3.22 21.34/4.76 41.44/8.96 23.37/5.39 13.89/3.47 18.48/3.76 33.87/14.27 20.48/4.81 23.11/4.90
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A MORE ON OPTIMIZATION
As we have discussed in Sec. 3.2, the forward propagation of our

model involves the backbone GNN model, the depth controller, and

the aggregator controller. Thus, denoting the loss function by L,
we can calculate its gradients ∇𝜽L, ∇𝝓𝒅

L, and ∇𝝓𝒂L, respectively.
Meanwhile, for each node 𝑣 ∈ V , the forward propagation results

in z𝑣 with entire graph and results in ẑ𝑣 with a sampled graph

which involves the resolution controller. Specifically, our resolution

controller rolls out a resolution configuration for each node 𝑣 ∈ V ,

where the resolution determines how to sample a neighborhood

for calculating ẑ𝑣 . Thus, we can calculate reward signals to update

𝝓 by policy gradients.

Since the parameters of our controllers play a similar role as the

architecture parameter defined in differentiable NAS, we follow

DARTS [19] to alternatively update 𝜽 on the training setDtrain and

𝝓 on the valid set D
val

. We summarize our learning procedure in

Algorithm 1.

B IMPLEMENTATION DETAILS
B.1 On Real-world Datasets
We consistently preprocess the ten datasets. First, we follow GPR-

GNN [2] to normalize the attributes for each node. The splits of

nodes into train/valid/test sets are conducted with different random

seeds for the ten trials, where we ensure the ten seeds used for

different methods are the same to keep the comparison fair.

Since the baselines are implemented with the code of GPR-GNN,

we inherit their configurations mostly. For all the baselines ex-

cept for NAS
∗
, we conduct HPO for them with learning rate ∈

{0.002, 0.01, 0.05}, weight decay ∈ {0, 5×10−4}, and depth 𝐿 ∈ {2, 3}.
For NAS

∗
, in addition to these search spaces, we allow it to se-

lect candidate aggregators for its graph convolutional layers from

{min, max, add, mean, self_msg}. For NW-GNN, we use the sec-

ond design of depth controller (see Sec. 3.1). Both the depth and

aggregator controllers are parameterized as a MLP and fed with the

node embedding calculated at the corresponding layer. In addition

to learning rate and weight decay, we search for some dedicated

hyper-parameters for NW-GNN, including selecting the tempera-

ture of controllers’ softmax operation from {1.0, 10.0}, whether to
include “self_msg” in the search space of aggregator controller, and

whether to optimize the backbone GNN model and the controllers

equally. The optimal hyper-parameter configurations are provided

in our source code.

Each training course has 1,000 epochs, where the model is eval-

uated on the valid set after each epoch. The checkpoint at the

epoch with the best performance on the valid set is reserved. For

HPO, each configuration is evaluated by the mean (valid) accuracy

without leaking the test set.

B.2 On Synthetic Datasets
Node-wise depth. First, we generate a random graphwhose degree

distribution follows a power law. Its basic statistics are as follow:

Number of nodes is 2,467, number of edges is 19,688, average degree

is 7.98, and clustering coefficient equals 0.126. Since the values of

the labels span a wide range with the maximal value of 2,467 and the

minimal value of 5, we take a logarithm for them for the numeric
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Figure 7: Distributions of the test nodes’ local assortativity.

stability reason. Under the “w/o feat.” setting, we use the constant

“one" as the node attribute.

Under the “hard feat.” setting, for each node 𝑣 , we first sam-

ple a 16-dimensional attribute from N(·|0, 0.25I) and execute mes-

sage passing for 𝑘𝑣 iterations, where summation is adopted as

the aggregator. In this way, a 16-dimensional one-hot vector can

be constructed to indicate the index of maximal value in the 16-

dimensional aggregated message. We concatenate the two vectors

and regard it as the attribute for this node. As for “easy feat.” setting,

we simply assign a 4-dimensional one-hot vector for each node as

its attribute, implying the ground-truth depth of this node.

Finally, we randomly split the node set of this graph into train,

valid, and test set with a ratio of 40%/30%/30%.

Node-wise aggregator. The graph is randomly generated in the

same way as before. Its basic statistics are as follow: Number of

nodes is 2,117, number of edges is 25,298, average degree is 11.94,

and clustering coefficient equals 0.094. The nodes on this graph are

also splitted in the same way as before.



Table 6: Datasets properties and statistics.

Cora CiteSeer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell

#Nodes 2,708 3,327 19,717 13,752 7,650 2,277 5,201 7,600 183 183

#Edges 5,278 4,552 44,324 245,861 119,081 31,371 198,353 26,659 279 277

#Features 1,433 3,703 500 767 745 2,325 2,089 932 1,703 1,703

#Classes 7 6 5 10 8 5 5 5 5 5

H(𝐺) 0.825 0.718 0.792 0.802 0.849 0.247 0.217 0.215 0.057 0.301
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